分金币

题目陈述:

  n个人围成一圈,没人手中有一定数量的硬币,硬币总和可以被 n 整除,每个人可以给左右相邻的人一些硬币,使得最后每人手中的硬币数量相等。求转手硬币数量的最小值。

解题思路:

用变量描述题目的分硬币过程,将题目转换成求中位数的算法。

假设第i个人初始有 Ai 枚硬币,最后每人得到的硬币数为 M ,给出的硬币数为 xi,把给出硬币的过程简化为单方向给出,如x1->x4->x3->x2->x1, 则可得到方程组:

A1-x1+x2=M

A2-x2+x3=M

.....

An-xn+x1=M(没用)

用 x1 分别表示 x2,x3....xn-1:

对于第1个人:A1-x1+x2=M  ->  x2= M-A1+x1=x1-C1(规定C1=A1-M)

对于第2个人:A2-x2+x3=M  ->  x3= M-A2+x2=2M-A1-A2+x1=x1-C2

对于第3个人:A3-x3+x4=M  ->  x4= M-A3+x3=3M-A1-A2-A3+x1=x1-C3

........

我们希望所有xi的绝对值之和最小 ,即 |x1|+|x1-C1|+|x1-C2|+...+|x1-Cn-1| 最小

给定数轴上的n个点,在数轴上的所有点中,中位数离所有点的距离之和最小

最优的x1就是这些数的中位数。

#include<iostream>
#include<algorithm>
#include<stdio.h>
#define maxn 1111111

using namespace std;

long long a[maxn];
long long b[maxn],M,sum;

int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        sum=0;
        for(int i=1;i<=n;i++)
        {
            cin>>a[i];
            sum+=a[i];
        }
        M=sum/n;
        b[0]=0;
        for(int i=1;i<n;i++)
        {
            b[i]=b[i-1]+M-a[i];
        }
        sort(b,b+n);
        long long x=b[n/2];
        long long ans=0;
        for(int i=0;i<n;i++)
        {
            ans+=abs(x-b[i]);
        }
        printf("%lld\n",ans);
    }
}


阅读更多
个人分类: 白书
上一篇365 A
下一篇LANDSAT数据下载及数据格式介绍
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭