
数学
文章平均质量分 75
程序员及其子女应该掌握的数学知识
汪子熙
18年深耕企业管理软件领域,精通 ABAP, Java, Javascript, Typescript, 精通 UI5, Fiori, Fiori Element, Angular, Kubernetes, SAP HANA, SAP BTP. 具有通过阅读 Github 上各种优秀的开源框架和工具源代码的习惯,对于我来说阅读源代码,就像阅读中国白话文一样轻松自然。
展开
-
一次函数的平面直角坐标系练习题
令 ( y = 0 ),解得 ( x = -3 ),即交点为 ( (-3, 0) )。验证旋转后的点是否正确,例如原直线上的点 ( (0, 3) ) 旋转后坐标为 ( (0.6741, -2.1213) ),代入方程验证正确。其中,斜率为 ( \tan(-30^\circ) = -\frac{\sqrt{3}}{3} )。:将坐标系平移,使得旋转中心 ( (-3, 0) ) 成为原点。接下来,将原图像绕点 ( (-3, 0) ) 顺时针旋转 75 度。原直线方程变为 ( y’ = x’ )。原创 2025-05-11 12:18:54 · 161 阅读 · 0 评论 -
一次函数旋转的数学练习题
将一次函数 ( y = x + 3 ) 的图像绕其与 X 轴的交点顺时针旋转 75 度后,新函数的表达式为 ( y = -\frac{\sqrt{3}}{3}x - \sqrt{3} )。• 截距 ( b’ = n - mk’ = 0 - (-3)\left(-\frac{\sqrt{3}}{3}\right) = -\sqrt{3} ),与推导结果一致。原创 2025-05-11 12:13:18 · 505 阅读 · 0 评论 -
理解充分条件和必要条件的差异
充分条件:如果有事物情况 A,则必然有事物情况 B;如果没有事物情况 A 而未必没有事物情况 B,A 就是 B 的充分而不必要条件,简称充分条件。简单来说,只要满足充分条件,结论就一定会成立,但结论成立不一定非得靠这个条件。例如 “如果天下雨,那么地就会湿” 中,“天下雨” 是 “地湿” 的充分条件,即使天没下雨,地也可能因为洒水等原因变湿。必要条件:如果没有事物情况 A,则必然没有事物情况 B;如果有事物情况 A 而未必有事物情况 B,A 就是 B 的必要而不充分条件,简称必要条件。原创 2025-05-10 13:19:41 · 558 阅读 · 0 评论 -
从几何箭矢到抽象空间:矢量与向量的概念谱系与实践意义
在线性代数里,向量是某个向量空间V的元素。该空间需满足加法与数量乘法八条公理,如交换律、结合律、存在零向量与负向量等(Wikipedia该定义抽掉了几何图像,仅保留运算结构。元素可以是 n 维实数列、函数、矩阵,甚至概率分布;只要公理成立,它们皆是“向量”。矢量与向量分属两条翻译传统;一个强调方向箭矢的几何直观,另一个突出线性结构的代数本质。但它们共享统一的运算公理,与标量相对,承担着描述“多元素量”的使命。从二维位移到三百维词向量,从牛顿力学到深度学习,人类对世界的定量刻画越来越倚重向量语言。原创 2025-05-06 22:57:56 · 960 阅读 · 0 评论 -
ChatGPT o3-mini-high 求解一道几何题
题目:下面给出一个比较详细的分析思路。为方便讨论,先对正方形ABCD及点的坐标做一个“坐标化”处理,然后再进行求解。结果表明,本题的最小值是。原创 2025-04-16 13:40:51 · 563 阅读 · 0 评论 -
利用 Trae 开发平面直角坐标系的教学动画
使用 html,css 和 JavaScript,写一个演示动画效果,将点 p(-2,4) 绕点O顺时针旋转45度后对应的点坐标为多少?它每次更新当前旋转角度,并在每一帧上绘制旋转后的点,直到完成 45 度的旋转。是画布的容器,其宽高均为 500px,且具有一个 1px 的边框,确保画布区域的可视化。在本题中,角度为 45 度,且是顺时针旋转,因此 θ=−45∘。点击开始动画按钮之后,能看到点 P 慢慢的进行旋转,到达最终的目的点。它负责计算旋转后的点坐标,并动态地在画布上绘制坐标轴、点和动画。原创 2025-04-13 11:01:47 · 787 阅读 · 0 评论 -
一道平面解析几何的旋转矩阵问题求解
要解决这个问题,我们需要用到。原创 2025-04-13 10:59:38 · 264 阅读 · 0 评论 -
从排版哲学到计算本质:深入理解 TeX 的原理与实践
从此\R表示实数集合符号ℝ。这种宏机制并非简单替换,而是一种上下文相关的语义抽象,可以递归定义、条件判断、延迟求值,体现了类似 LISP 的函数式特征。TeX 系统在过去 40 年中几乎没有变化,但它依然被广泛使用于科学论文、数学教材、学术会议、工程文档之中。可复现性强,输出结果平台无关;数学公式排版质量无可匹敌;完整自由的编程式控制;极强的稳定性和可扩展性。理解 TeX,不仅是为了写好一篇论文,更是一次深入计算思维本质的旅程。原创 2025-04-13 10:58:33 · 921 阅读 · 0 评论 -
LaTeX 语法详解:从结构到排版的系统化指南
定义新命令现在,\R将输出实数集符号。定义新环境。原创 2025-04-13 10:58:00 · 937 阅读 · 0 评论 -
一个 LaTex 表示的二维向量旋转表示
这段 LaTeX 表达式不仅展现了数学上的优雅结构,也隐藏了深刻的工程与理论价值。从语法层面来看,它是标准的 LaTeX 数学矩阵表达式;从数学上看,它是二维线性变换中最核心的一个:旋转矩阵。从实际应用出发,它贯穿了从图形渲染、机器人坐标变换,到量子计算与信号处理的诸多核心领域。矩阵乘法和线性变换是人类将几何直观映射为代数操作的伟大发明之一。而你提供的这段旋转矩阵公式,正是这一发明中最直观、最典型的代表。原创 2025-04-13 10:57:28 · 921 阅读 · 0 评论 -
勾股定理的证明
勾股定理 ( Pythagorean Theorem ) 在几何学的世界里享有极高的声誉。它在古代文明的发展过程中扮演了重要角色,更在现代科学、工程、建筑等领域里有着不可或缺的实用价值。许多数学家都曾为这一定理给出过形形色色的证明方式,横跨几何、代数与向量等不同视角。下面会以几何与代数的思路,从基础概念到步骤推演,展开一段相当细致的论证过程。为了帮助读者更好地理解抽象内容,会尽量结合来自真实生活的案例研究,例如利用勾股定理来测量地块的对角线长度,或者在建筑规划中估算斜梁的尺寸。相关示例有助于让各位直观地看到原创 2025-04-11 17:41:33 · 747 阅读 · 0 评论 -
数学中的 Decimal 概念及其严谨推导
拓扑学视角下,decimal 作为实数的一种表示方式,具有稠密性,即对于任意实数 ( x ),总存在一个 decimal 数 ( d ) 使得 ( |x - d| ) 可任意小。例如,在二进制(binary)系统中,数的表示采用 ( 2 ) 为基数,如 ( 101.101_2 ) 可转换为十进制数 ( 5.625 )。其中,(a_i) 是属于 ( {0,1,2,3,4,5,6,7,8,9} ) 的整数系数,指数 ( i ) 可以取正整数、零或者负整数,从而涵盖整数、小数和无限循环小数等情况。原创 2025-02-15 23:11:38 · 823 阅读 · 0 评论 -
用初中数学知识证明 1 + 1 = 3
Kimi 一度已经非常接近正确答案了,它已经意识到问题可能出现在处理平方根时出现了逻辑上的错误,但是在图例 2 的位置,它自己否决了这一假设,认为自己处理的是正数,所以不太可能是问题所在。我使用 ChatGPT 的 O1 模型,将儿子证明过程拍照上传,O1 用了十二秒钟的处理时间,准确指出了证明过程中存在的错误,并且丝毫不留情面,指出这类“证明”仅是个伪证示例。再切换成 ChatGPT 4O,回答也没有问题,指出了根号与平方互为反操作,但未严格验证每步的正负号,因为平方根应包含正负两种情况。原创 2025-01-24 15:43:09 · 1656 阅读 · 0 评论 -
逆向思维在初中数学中的具体应用
逆向思维是初中数学学习中的重要方法,它能帮助学生以全新的视角看待问题,从而培养深层次的理解能力。无论是方程、几何、实际应用问题,还是数列推导,逆向思维都能提供一种清晰、直观的解题思路。每次解题后,尝试从结论反推过程。多练习开放性问题,尝试不同的解题角度。结合生活中的实际问题,应用逆向思维。通过这些练习,学生不仅能在数学上取得进步,还能将逆向思维的技巧应用到其他学科及日常生活中,成为全面发展的学习者。原创 2025-01-18 15:16:44 · 1418 阅读 · 0 评论 -
曲线 y = ln x 与直线 x + y = 1 垂直的切线方程探讨
通过严谨的推导,我们得出曲线y = \ln x上与直线x + y = 1y = x - 1。这一问题的核心在于理解斜率的几何意义,以及正确运用导数和直线方程的基本性质。确定目标几何关系(如垂直或平行)。利用导数求出曲线切线的斜率。联立方程求解切点和切线方程。这一探讨展示了数学在几何问题中的优雅应用,也为进一步学习曲线与直线的关系奠定了基础。原创 2025-01-14 16:53:22 · 272 阅读 · 0 评论 -
博弈论中的完全信息与不完全信息博弈
完全信息博弈是指所有参与者都掌握关于博弈规则、各方可能采取的策略集合、以及所有玩家的收益函数的完整信息。在这种情况下,每个参与者不仅清楚自己可选择的策略,也完全了解对手可能的选择及相应的收益。需要特别注意的是,完全信息博弈并不意味着参与者能预知对手的具体行为,而是意味着参与者对所有可能行为的了解是透明和对称的。所有参与者拥有对等且完整的信息。决策基于对已知规则和其他玩家收益的透明理解。博弈的重点是策略分析和对对手行为的推测,而非对信息的获取。原创 2025-01-12 14:49:05 · 658 阅读 · 0 评论 -
如何阅读统计图表中的 Density Plot
密度图是一种强大的工具,通过平滑曲线展示数据分布的连续性和规律性。在语文成绩的案例中,它帮助我们发现大多数学生的成绩集中区间,并揭示潜在的异常值。通过掌握密度图的构造、解读方法以及结合实际案例的分析,我们可以在探索性数据分析中更加高效地运用这一工具。原创 2024-12-27 19:34:12 · 2702 阅读 · 0 评论 -
什么是统计图表中的 Box Plot
Box Plot 是一种功能强大的统计图表,通过直观简洁的方式帮助分析者了解数据的分布和差异。无论是在学术研究还是商业分析中,Box Plot 都是一种不可或缺的工具。通过理解其构造、特点和使用场景,分析者可以更有效地利用它为决策提供支持。原创 2024-12-27 19:33:24 · 794 阅读 · 0 评论 -
如何展示班级学生考试成绩相对于某个特定值的离散程度
选择合适的图表类型以及计算参考值的方法,可以帮助更好地理解数据的离散程度。箱线图适合快速展示数据分布和离散情况;直方图适合总体分布模式分析;密度图则更适合细致观察分布趋势。在教育领域,通过这些工具可以帮助教师优化教学策略,提升整体教学效果。原创 2024-12-27 19:32:23 · 908 阅读 · 0 评论 -
标准差数在统计学生考试成绩中的重要作用
标准差的定义是数据点与平均值之间偏差的平方的平均值的平方根。通过计算标准差,我们可以量化数据点的分散程度,理解数据整体的一致性或变异性。公式如下:( \sigma ) 表示标准差。( x_i ) 是每个数据点(如每个学生的考试成绩)。( \mu ) 是数据的均值(即所有学生成绩的平均值)。( n ) 是数据点的总数(即学生总人数)。标准差是班级考试成绩分析中不可或缺的工具。它能够量化成绩的离散程度,为教育者提供科学依据以评估教学效果、制定改进策略以及管理班级学习氛围。原创 2024-12-27 19:31:27 · 1800 阅读 · 0 评论 -
百分位数在统计学生考试成绩中的重要作用
百分位数作为统计学的重要工具,在分析班级考试成绩中扮演了重要角色。它不仅能够有效地描述数据的分布,还能够识别学生的相对位置,帮助教师制定科学的教学策略。在教育实践中,合理应用百分位数可以极大地提升教学质量,并为学生提供更精准的支持与帮助。原创 2024-12-27 19:30:32 · 2167 阅读 · 0 评论 -
方差在统计学生考试成绩中的重要作用
方差在班级考试成绩分析中具有重要地位,它能够提供关于成绩分布的深入见解,帮助教师制定更科学的教学策略。在实践中,通过理解方差的意义并将其应用到教育管理和教学设计中,教师和学校能够更高效地促进学生全面发展。原创 2024-12-27 19:29:27 · 1136 阅读 · 0 评论 -
中位数在统计学生考试成绩中的重要作用
中位数是分析班级考试成绩时不可或缺的工具。它以其独特的抗干扰性,能够真实反映班级的整体成绩水平,特别是在数据分布存在显著偏差时。通过具体实例和应用场景可以看到,中位数在教学评估、资源分配和学生分组等方面都能提供重要的参考。然而,为了全面分析学生的表现,还需要结合其他统计指标,以便制定更科学合理的教学策略。原创 2024-12-27 19:28:16 · 1372 阅读 · 0 评论 -
如何理解五维甚至更高维的空间?
这个额外的维度被认为是紧缩在极小的尺度上,类似于一根极细的圆环,因此我们在日常生活中无法直接观察到。在量子力学中,系统的状态被描述为 Hilbert 空间中的向量,这个空间通常是无限维的。在日常生活中,虽然我们无法直接感知到五维或更高维的空间,但高维空间的概念已经深入影响了科技的发展。例如,在密码学中,高维空间的复杂性被用来设计难以破解的加密算法,如基于格的密码系统。然而,随着科学的发展,特别是在物理学、数学和计算机科学的前沿研究中,五维甚至更高维的空间概念逐渐浮出水面。高维空间的概念在金融领域也有应用。原创 2024-11-25 11:55:23 · 1259 阅读 · 0 评论 -
什么是欧式距离、曼哈顿距离、切比雪夫距离?
对于数学距离的探讨,这是一个几何和代数上的基础话题,也广泛应用于机器学习、优化理论和各种工程领域。本文介绍的三种距离度量方法虽然简单,但它们在高维空间中的作用却非同小可,每一种都有自己特定的应用场景和几何意义。原创 2024-11-18 12:15:36 · 1461 阅读 · 0 评论 -
什么是函数的自变量和因变量,定义域和值域
例如,函数 f(x, y) = x^2 + y^2 是从 R^2 到 R 的映射,其中 x 和 y 是自变量,而 f(x, y) 是因变量。在实际中,多元函数可以用于描述那些涉及多个独立因素的问题,例如,经济学中的生产函数,物理学中的热力学过程。自变量和因变量是函数中两个最关键的概念,自变量是可以自由取值的变量,而因变量则是根据自变量取值而变化的变量。这里 t 是自变量,因为它表示时间,可以自由变化,而 s 是因变量,它表示物体的位移,取决于时间的变化。在多元函数中,定义域是所有自变量的取值组合的集合。原创 2024-11-11 07:35:26 · 2465 阅读 · 0 评论 -
复合函数求导分解到最后一层时最内层函数的特征
复合函数(composite function)在数学中是将一个函数的输出作为另一个函数的输入来构造的。例如,给定两个函数 f(x) 和 g(x),复合函数 h(x) 可以表示为 h(x) = f(g(x))。在这种情况下,g(x) 被称为内层函数,而 f(x) 被称为外层函数。对于复合函数的求导,最为重要的工具就是链式法则(chain rule)。链式法则的基本思想是通过逐层对每个组成函数求导,并根据链的关系将每一层的导数相乘,直到分解到最内层的函数。原创 2024-11-06 09:16:12 · 950 阅读 · 0 评论 -
什么是三角形的外角
设有一个三角形 ( \triangle ABC ),其三个顶点为 ( A )、( B )、( C ),三条边分别为 ( AB )、( BC )、( CA )。这个三角形的三个内角分别记为 ( \angle A )、( \angle B )、( \angle C )。现在,假设我们延长边 ( BC ) 到点 ( D ),那么在点 ( A ) 处,原来的内角 ( \angle BAC ) 的邻侧会形成一个新角,这个角就是三角形的一个外角,记作 ( \angle CAD )。原创 2024-10-31 08:53:46 · 1576 阅读 · 0 评论 -
使用 ChatGPT 计算图片中包含的三角形的个数
这段代码的主要目的是从一张包含简单图形(如三角形)的图片中,识别并计算可以由直线端点组成的独特三角形数量。,计算两点之间线段的斜率。,该函数接受三个点,如果它们的斜率各不相同(即没有两点共线),则可以构成三角形。变量存储了可以由检测到的线段端点形成的独特三角形的数量,这个值是脚本的输出。这里特别用于生成所有可能的三个点的组合。是 OpenCV 库的常用别名,这是一个强大的计算机视觉处理库。是轮廓近似方法,它仅保存轮廓线段的端点,有助于减少存储空间。这段代码遍历每个轮廓中的点,并将它们作为线的端点添加到。原创 2024-04-30 14:04:03 · 250 阅读 · 0 评论 -
定量分析(Quantitative Analysis)和定性分析(Qualitative Analysis)概念介绍
定量分析(Quantitative Analysis)和定性分析(Qualitative Analysis)是两种主要的数据分析方法,它们在学术研究、商业决策、社会科学等领域中广泛应用。这两种方法有不同的特点和应用场景。原创 2024-05-18 19:27:16 · 5957 阅读 · 0 评论 -
什么是关系代数运算
关系代数运算是一种处理关系数据库的数学工具,它提供了一组操作来查询和操作关系数据库中的数据。关系代数运算是关系数据库理论的核心部分,帮助用户定义和操纵关系数据库中的数据。它由一系列基本操作和复合操作组成,允许用户以一种结构化和形式化的方式查询和更新数据。原创 2024-05-18 19:12:58 · 906 阅读 · 0 评论 -
什么是调和平均
调和平均是通过对一组非零数值的倒数求算术平均,再对这个结果取倒数来计算的。对于一组数值 ( x_1, x_2, \ldots, x_n ),调和平均 ( H ) 定义为:其中 ( n ) 是数值的个数。原创 2024-05-18 17:18:03 · 905 阅读 · 0 评论 -
什么是几何平均
几何平均是一组数值的乘积的 ( n ) 次方根,其中 ( n ) 是数值的个数。给定一组数值 ( x_1, x_2, \ldots, x_n ),几何平均 ( G ) 定义为:几何平均的计算需要注意所有数值必须为正数,因为负数和零的乘积的根不存在或无意义。原创 2024-05-18 17:14:44 · 349 阅读 · 0 评论 -
什么是数据统计中的标准差?
标准差(Standard Deviation)是数学统计学中的一个重要概念,用来描述一组数据的离散程度或分散程度。标准差可以帮助我们理解数据的集中趋势和数据点的波动情况,是统计分析中经常使用的指标。标准差越小,数据点越接近平均值;标准差越大,数据点分布得越分散。为了深入理解标准差,我们需要先了解一些基础概念。平均值(Mean)是数据集中趋势的一个简单度量,它表示一组数据的中心位置。方差(Variance)是描述数据分散程度的一个指标,表示数据点与平均值之间的偏离程度的平方的平均值。原创 2024-05-16 21:22:15 · 1190 阅读 · 0 评论 -
什么是数理统计里的中位数概念
全角字符全角字符是指在字符显示和存储时,占用两个标准的 ASCII 字符宽度的字符。这类字符通常用于表示东亚字符,如汉字、日文假名和一些特殊符号。在 Unicode 标准中,全角字符的编码范围通常在 U+FF00 到 U+FFEF 之间。全角字符占用的宽度是固定的,即使在不同的字体和字号下也不会改变,这在排版和显示对齐上有一定优势。半角字符半角字符是指在字符显示和存储时,占用一个标准的 ASCII 字符宽度的字符。这类字符包括了拉丁字母、数字、一些标点符号等。原创 2024-05-16 21:21:19 · 813 阅读 · 0 评论 -
什么是数学统计中的0-1标准化
数学统计中的 0-1 标准化(也称为 Min-Max 标准化或 Min-Max 归一化)是一种常见的数据预处理技术,主要用于将数据缩放到 [0, 1] 范围内。0-1 标准化通过线性变换将原始数据映射到新的范围中,保持数据的相对比例不变。0-1 标准化的公式如下:这种方法的优点在于数据的所有值都被映射到 [0, 1] 范围内,可以消除量纲的影响,使得不同特征的数据可以直接进行比较,并且在某些机器学习算法(如神经网络和支持向量机)中,标准化数据能够提高算法的性能和收敛速度。原创 2024-05-16 21:07:55 · 760 阅读 · 0 评论 -
什么是数据统计中的抽样调查
抽样调查是指从一个总体中选择一部分个体进行研究和分析,从而推断出整体情况的一种统计学方法。这种方法通常用于收集关于大型群体的数据,而无需调查每一个个体,从而节省时间和成本。抽样调查在社会科学、市场研究、医疗研究、经济学等多个领域得到了广泛应用。原创 2024-05-16 21:02:22 · 1255 阅读 · 0 评论 -
初等数学里的动点问题(一)
p 与 B 重合时,走过的路程是12,所以时间是 12P 的距离是 -9 + t,当 P 和 Q 相遇时,说明 P 和 Q 在数轴上标记的数相同,也就是说 -9 + t = 3-2t, 解方程 t = 4当 Q 从 B,走到 A,也就是掉头之前,总共走了12,速度是2,所以总共走了 6 秒才掉头。然后掉头往 O 走,当到达 O 时,总共经过了 9 除以 3 = 3 秒。所以 6 秒和 之后的 3 秒,是两个关键的时间点。原创 2024-05-13 16:23:45 · 837 阅读 · 0 评论 -
什么是容斥原理
这个公式首先加上每个圈子的人数,然后减去每两个圈子交集的人数(因为这部分被重复计算了两次),最后加回三个圈子都有的人数(因为这部分在前面的步骤中被减掉了三次,但实际上应该只减两次)。通过这样的步骤,就可以精确计算出总的人数,没有遗漏也没有重复。这个公式通过对单个集合的元素个数进行加法运算,然后减去所有两个集合之间交集的元素个数,再加上所有三个集合的交集的元素个数,依此类推,直到 n 个集合的交集。它的核心思想是通过对集合进行交集与并集的操作,减去重复计算的部分,从而准确地计算出多个集合的并集中元素的总数。原创 2024-05-06 18:50:16 · 570 阅读 · 0 评论 -
通过一个实际例子学习容斥原理
通过容斥原理,我们能够确切地计算出三个小朋友一共拥有的不同玩具的数量。这个原理帮助我们处理了重复计数的问题,并确保了每种玩具只被计算一次。原创 2024-05-06 18:49:20 · 380 阅读 · 0 评论