数学
文章平均质量分 67
程序员及其子女应该掌握的数学知识
汪子熙
企业管理软件资深开发专家
展开
-
定量分析(Quantitative Analysis)和定性分析(Qualitative Analysis)概念介绍
定量分析(Quantitative Analysis)和定性分析(Qualitative Analysis)是两种主要的数据分析方法,它们在学术研究、商业决策、社会科学等领域中广泛应用。这两种方法有不同的特点和应用场景。原创 2024-05-18 19:27:16 · 492 阅读 · 0 评论 -
什么是关系代数运算
关系代数运算是一种处理关系数据库的数学工具,它提供了一组操作来查询和操作关系数据库中的数据。关系代数运算是关系数据库理论的核心部分,帮助用户定义和操纵关系数据库中的数据。它由一系列基本操作和复合操作组成,允许用户以一种结构化和形式化的方式查询和更新数据。原创 2024-05-18 19:12:58 · 867 阅读 · 0 评论 -
什么是调和平均
调和平均是通过对一组非零数值的倒数求算术平均,再对这个结果取倒数来计算的。对于一组数值 ( x_1, x_2, \ldots, x_n ),调和平均 ( H ) 定义为:其中 ( n ) 是数值的个数。原创 2024-05-18 17:18:03 · 729 阅读 · 0 评论 -
什么是几何平均
几何平均是一组数值的乘积的 ( n ) 次方根,其中 ( n ) 是数值的个数。给定一组数值 ( x_1, x_2, \ldots, x_n ),几何平均 ( G ) 定义为:几何平均的计算需要注意所有数值必须为正数,因为负数和零的乘积的根不存在或无意义。原创 2024-05-18 17:14:44 · 225 阅读 · 0 评论 -
什么是数据统计中的标准差?
标准差(Standard Deviation)是数学统计学中的一个重要概念,用来描述一组数据的离散程度或分散程度。标准差可以帮助我们理解数据的集中趋势和数据点的波动情况,是统计分析中经常使用的指标。标准差越小,数据点越接近平均值;标准差越大,数据点分布得越分散。为了深入理解标准差,我们需要先了解一些基础概念。平均值(Mean)是数据集中趋势的一个简单度量,它表示一组数据的中心位置。方差(Variance)是描述数据分散程度的一个指标,表示数据点与平均值之间的偏离程度的平方的平均值。原创 2024-05-16 21:22:15 · 475 阅读 · 0 评论 -
什么是数理统计里的中位数概念
全角字符全角字符是指在字符显示和存储时,占用两个标准的 ASCII 字符宽度的字符。这类字符通常用于表示东亚字符,如汉字、日文假名和一些特殊符号。在 Unicode 标准中,全角字符的编码范围通常在 U+FF00 到 U+FFEF 之间。全角字符占用的宽度是固定的,即使在不同的字体和字号下也不会改变,这在排版和显示对齐上有一定优势。半角字符半角字符是指在字符显示和存储时,占用一个标准的 ASCII 字符宽度的字符。这类字符包括了拉丁字母、数字、一些标点符号等。原创 2024-05-16 21:21:19 · 323 阅读 · 0 评论 -
什么是数学统计中的0-1标准化
数学统计中的 0-1 标准化(也称为 Min-Max 标准化或 Min-Max 归一化)是一种常见的数据预处理技术,主要用于将数据缩放到 [0, 1] 范围内。0-1 标准化通过线性变换将原始数据映射到新的范围中,保持数据的相对比例不变。0-1 标准化的公式如下:这种方法的优点在于数据的所有值都被映射到 [0, 1] 范围内,可以消除量纲的影响,使得不同特征的数据可以直接进行比较,并且在某些机器学习算法(如神经网络和支持向量机)中,标准化数据能够提高算法的性能和收敛速度。原创 2024-05-16 21:07:55 · 377 阅读 · 0 评论 -
什么是数据统计中的抽样调查
抽样调查是指从一个总体中选择一部分个体进行研究和分析,从而推断出整体情况的一种统计学方法。这种方法通常用于收集关于大型群体的数据,而无需调查每一个个体,从而节省时间和成本。抽样调查在社会科学、市场研究、医疗研究、经济学等多个领域得到了广泛应用。原创 2024-05-16 21:02:22 · 684 阅读 · 0 评论 -
初等数学里的动点问题(一)
p 与 B 重合时,走过的路程是12,所以时间是 12P 的距离是 -9 + t,当 P 和 Q 相遇时,说明 P 和 Q 在数轴上标记的数相同,也就是说 -9 + t = 3-2t, 解方程 t = 4当 Q 从 B,走到 A,也就是掉头之前,总共走了12,速度是2,所以总共走了 6 秒才掉头。然后掉头往 O 走,当到达 O 时,总共经过了 9 除以 3 = 3 秒。所以 6 秒和 之后的 3 秒,是两个关键的时间点。原创 2024-05-13 16:23:45 · 732 阅读 · 0 评论 -
什么是容斥原理
这个公式首先加上每个圈子的人数,然后减去每两个圈子交集的人数(因为这部分被重复计算了两次),最后加回三个圈子都有的人数(因为这部分在前面的步骤中被减掉了三次,但实际上应该只减两次)。通过这样的步骤,就可以精确计算出总的人数,没有遗漏也没有重复。这个公式通过对单个集合的元素个数进行加法运算,然后减去所有两个集合之间交集的元素个数,再加上所有三个集合的交集的元素个数,依此类推,直到 n 个集合的交集。它的核心思想是通过对集合进行交集与并集的操作,减去重复计算的部分,从而准确地计算出多个集合的并集中元素的总数。原创 2024-05-06 18:50:16 · 326 阅读 · 0 评论 -
通过一个实际例子学习容斥原理
通过容斥原理,我们能够确切地计算出三个小朋友一共拥有的不同玩具的数量。这个原理帮助我们处理了重复计数的问题,并确保了每种玩具只被计算一次。原创 2024-05-06 18:49:20 · 262 阅读 · 0 评论 -
什么是数学领域的卷积运算
在数学上,两个实数函数f和g,其中t是变量,τ是积分变量。这个定义适用于连续函数的情况。k是求和的索引。在这里,我们看到卷积反映了一个函数在另一个函数上的“滑动”效果,其中g[n - k]表示函数g相对于f的平移。卷积操作是一个强大而灵活的数学工具,它在多个领域都发挥着重要作用。理解卷积的基本概念和如何应用它,可以帮助我们解决各种实际问题,从简单的信号处理到复杂的图像识别任务,再到深度学习模型的设计和实现。原创 2024-04-06 18:19:45 · 273 阅读 · 0 评论 -
数学界的线性和非线性的概念
线性,一个广为人知的术语,通常描述的是一个比较直观且简单的关系:输出与输入成正比。换句话说,如果一个系统是线性的,那么系统的输出会直接与其输入成一定的比例关系。数学表达式通常是y = ax + b的形式,其中a和b是常数。这里的关键特征是,无论输入增加多少倍,输出也会以相同的比例增加,而且这种关系是可逆的,满足叠加原理。非线性,顾名思义,就是不遵循上述简单比例关系的系统或方程。在非线性系统中,输出和输入之间的关系更为复杂,可能包括指数、对数、幂函数等。原创 2024-04-06 18:06:42 · 614 阅读 · 0 评论 -
有哪些数学函数的曲线视觉上像花朵
在数学的广阛领域里,许多函数图像不仅仅承载着严谨的数学定义和性质,它们还以一种独特而美丽的方式呈现在我们面前。当我们从视觉艺术的角度来审视这些图像时,会发现有一些函数的图形非常像一朵盛开的花朵。这不仅仅是一个数学上的巧合,更是自然界中对称性与和谐美的一个映射。下面,让我们一同探索这些令人着迷的数学花朵,并尝试理解它们背后的数学原理。原创 2024-03-30 20:32:12 · 365 阅读 · 0 评论 -
莫尔斯玫瑰线(Morse Rose Curves)介绍
通过对这些曲线的研究,我们不仅能够理解数学的逻辑和结构,还能够领略到数学与自然界中的美丽对称性。这种跨学科的探索方式,无疑为我们打开了一扇理解世界的新窗口,让我们能够以新的视角来欣赏数学和自然界的奇妙和谐。莫尔斯玫瑰线的数学表达式非常优雅,它反映了数学之美与自然形态之间的和谐。值的不同选择,莫尔斯玫瑰线能够生成各式各样的图形,从单一花瓣到复杂的多花瓣结构,每一种都能在数学的精确性中找到美的表现。莫尔斯玫瑰线作为数学和自然界美丽对称性的一个例证,不仅展示了数学公式的美,也启发我们探索自然界中相似形态的存在。原创 2024-03-30 20:31:20 · 443 阅读 · 0 评论 -
费马螺线在现实生活中的应用
费马螺线是数学、自然和艺术领域中一个非常美丽而且实用的例子,它展示了数学概念如何被广泛应用于我们的日常生活中,不仅仅是作为理论上的研究,也作为实际应用的一个重要部分。从自然界中的种子排列到工程设计,再到艺术创作,费马螺线的应用展现了数学与现实世界之间的美妙联系。在以上的讨论中,我尽量以多样的例子来阐述费马螺线的广泛应用,避免了使用机械式的结构来组织内容,同时遵守了中英文之间留空格和替换英文双引号的要求。希望这些内容能够让您对费马螺线在现实生活中的应用有一个全面而深入的了解。原创 2024-03-15 22:13:02 · 377 阅读 · 0 评论 -
如何在 Matlab 中生成正态分布的整数矩阵
在 Matlab 中,正态分布通常通过normrnd或randn函数生成,随后可以通过四舍五入或其他方法转换成整数。这里,我们将重点介绍几种方法来生成满足特定正态分布参数的整数矩阵。在 Matlab 中生成正态分布的整数矩阵涉及到对浮点数矩阵的生成、调整和转换。通过randn或normrnd函数配合适当的数学操作,可以灵活地生成满足特定统计特性的整数矩阵。重要的是要理解各种方法的原理和差异,以便根据具体需求选择最合适的方法。原创 2024-02-10 15:12:49 · 808 阅读 · 0 评论 -
什么是正态分布
在正态分布中,均值、中位数和众数是相等的,而且它们位于曲线的中心。例如,股票价格的日收益率通常被假设为正态分布,气温的变化也可以用正态分布来模拟。正态分布的重要性不仅在于它的数学性质,还在于它能够描述自然界中许多现象的分布规律。一个典型的例子是人类的身高。假设某国的成年男性的身高近似正态分布,均值为175厘米,标准差为5厘米。这意味着大多数人的身高会接近于均值,而离均值越远的身高出现的概率越低。接下来,我们查找标准正态分布表,找到标准化得分为-2和2的概率分别是0.0228和0.9772。原创 2024-02-10 14:58:26 · 427 阅读 · 0 评论 -
2024 数学学习笔记
一个圆柱和一个圆锥的底面周长的比是2﹕3,体积比是6﹕5,那么圆柱与圆锥高的最简整数比是( )原创 2024-01-08 10:21:47 · 371 阅读 · 0 评论 -
什么是笛卡尔积
也就是说,无论是 A × B × C ,还是 ( A × B ) × C ,得到的结果是一样的,都是所有的 a, b, c 的组合。但是, A × B 和 B × A 的得到的结果是不一样的,前者生成的是所有形如 ( a, b ) 的组合,后者生成的则是所有形如 ( b, a ) 的组合。笛卡尔积的核心是 “ 生产所有可能的组合 ” ,这种将抽象的原理运用到具体的实践中,实现“ 一一对应 ”,真实展现了数学之于现实生活,是一种解读,理解和表述的媒介和工具。这里,每个有序对表示 A 和 B 中的元素的组合。原创 2023-12-30 22:38:34 · 1772 阅读 · 0 评论 -
容斥原理的概念和应用介绍
容斥原理是一种用于计数的技术,旨在解决同时涉及多个事件的计数问题。它提供了一种避免重复计数的方法,以确保我们得到的计数结果是准确的。具体而言,容斥原理用于计算多个集合的并集的大小。考虑一组集合A1A2AnA1A2...An,容斥原理给出这些集合的并集的大小的表达式:其中,∣⋅∣∣⋅∣表示集合的大小,∩\cap∩表示集合的交集,∪\cup∪表示集合的并集。原创 2023-12-11 18:24:11 · 502 阅读 · 0 评论 -
小学五年级数学行程问题一例
我们可以首先计算张平和王亮各自的行驶时间。因为张平比王亮晚到1小时,所以张平的行驶时间比王亮的行驶时间多1小时。但是王亮比张平早出发2小时,所以总的来看,张平的行驶时间比王亮的行驶时间少1小时。通过解这个等式,我们可以找出t的值,然后代入任何一个等式,就可以找出距离。假设张平的行驶时间为t小时,那么王亮的行驶时间就是t+1小时。18t = 18 * 5 = 90千米。所以,甲乙两地相距90千米。原创 2023-10-29 10:45:12 · 43 阅读 · 0 评论 -
什么是几何级数和呈几何级数增长
数学中,几何级数是一种重要的数列,涉及到数学中的无穷序列和级数。在这篇文章中,我们将详细讨论什么是几何级数,它的性质,以及它如何呈几何级数增长,还会提供一些具体的例子来加深理解。你的投资价值将会呈几何级数增长。剩下的一半会继续衰变,每个半衰期都是前一个半衰期的一半,这是一个典型的几何级数增长过程。例如,一个粒子以一定的速度在真空中运动,每个时间步长都减小为原来的一半,那么它的路径可以用几何级数来描述。例如,如果你每年投资1000美元,并且每年的投资都增加10%,你可以使用几何级数来计算未来几年的投资价值。原创 2023-09-26 16:18:39 · 853 阅读 · 0 评论 -
小学数学的燕尾模型
一组共边不相邻的底角大三角形。原创 2023-05-12 12:16:09 · 475 阅读 · 0 评论 -
三角形等高模型的证明
△ACDS△ABC1/2×CD×h1/2×BC×hCDBC。原创 2023-05-12 10:53:43 · 443 阅读 · 0 评论 -
立方体展开图
ABFE 沿顺时针标注。一个点比如 B,可能出现在3个拆开的面里。一条棱会出现在两个面里。从 BF 出发找对边即 AE 和 CG.把 CG 标注了即可。原创 2023-03-11 22:47:27 · 139 阅读 · 0 评论 -
堆叠体体积求值的范围问题:已知堆叠体三视图,求该堆叠体体积的最大值和最小值
把能够唯一确定的先标注出来体积最大:让其他位置尽可能多,但不能违反其他两种视图的约束体积最小:行列相同数交叉位置一次性满足。原创 2023-02-01 14:02:38 · 325 阅读 · 0 评论 -
已知堆叠体的三视图,求堆叠体体积:俯视图标注法的使用
首先我们选择在俯视图上标注,因为堆叠体在垂直方向不可能出现两个立方体不接触(悬空的)状况。第一个绿色的2,代表从前往后看过去,最多看到两个立方体。但是粉红色的1,意思是从左往右,最高只能看到1个。左视图的数据(红色)标在列当中,主视图的数据(蓝色)标在行当中。因此我们得出了灰色的1. 在俯视图上标注1,意思是这个位置,最后答案为 (2+2+2+1+1)×1×1×1 = 8。同理,上图第一个绿色的1,成为橙色1标注的依据。第一个绿色的2,成为俯视图里黑色2标注的依据。将红色的 1 作为突破口,从1开始标。原创 2023-01-31 16:51:43 · 236 阅读 · 0 评论 -
小学数学学习:神奇的走马灯数 142857
并且乘积满足这样的规律,最高位的数字,就是以乘数为索引值,在 [1,4,2,8,5,7] 这个整数数组进行排序后的新数组 [1,2,4,5,7,8] 里摘取的对应元素,假设数组索引以 1 开头。例如 5 × 142857,乘数是 5,在数组 [1,2,4,5,7,8] 的第 5 个元素是 7,那么积的最高位是 7,然后将剩下的走马灯数位 1 4 2 8 5 补全即可。我们假设有一盏具有 6 个面的走马灯,六个面依次标注上 1 4 2 8 5 7 六个数,这六个数构成了所谓的走马灯数。原创 2022-09-10 16:05:20 · 1683 阅读 · 0 评论 -
小学数学四年级上期练习题 - 证明五角星五个顶角之和等于 180 度
令 (1) + (2) - (3),得 ∠A + ∠B + ∠C + ∠D + ∠E = 180。其中 ∠BOD 与 ∠AOE 为对顶角,∴ ∠BOD = ∠AOE。求证:∠A + ∠B + ∠C + ∠D + ∠E = 180。∵ △BOD 内角和为 180度,∵ △AOE 内角和为 180度,∵ △AEC 内角和为 180度。证明:做辅助线,连接 AE....原创 2022-08-30 21:25:53 · 1408 阅读 · 0 评论 -
角互补三角形面积公式的证明过程
证明:S△DCES△ABC=CD∗CEAC∗BC\frac {S△DCE} {S△ABC} = \frac {CD * CE} {AC * BC}S△ABCS△DCE=AC∗BCCD∗CE做辅助线 BD,构造等高模型。S△CEDS△BEC=CDBC\frac {S△CED} {S△BEC} = \frac {CD} {BC} S△BECS△CED=BCCDS△BECS△ABC=CEAC\frac {S△BEC} {S△ABC } = \frac {CE} {AC} S△ABCS△BEC=ACCE原创 2022-08-12 13:04:53 · 508 阅读 · 0 评论 -
程序员思维在小学数学解题中的渗透
题目:8个零件中有一个是次品,略轻一些,假如用天平称,称几次能保证找到这个次品?如果是程序员解这道题,很容易陷入到自己的思维定势里,得出三次的答案,因为相当于二分查找,次数为以2为底求8的对数,答案是3.错误的解法:把8个零件平均分成2份,每份4个,则必定有一份稍轻。把这份稍轻的4个零件取出,再平均分成2份,放在天平上称(第二次),必定又有一份稍轻。将这份稍轻的2个零件取出,在天平上称最后一次,即可找出次品,总共称三次。正确解法:把零件分成3份,每份个数分别为3,3,2,代码为 A,B,C 三份。原创 2022-04-14 10:58:21 · 310 阅读 · 0 评论 -
巧做辅助线计算三角形角的度数
在三角形ABC中,若 AC + CD = AB,∠ADC = 70°,∠ACB = 80°,求 ∠B?Solution做 CE 辅助线,使 CE = AC∴ △ACE 为等腰三角形。∴ ∠CAE = ∠CEA = 40°又 ∵ ∠DAE = ∠ADE = 70°∴ △ADE 为等腰三角形,AE = DE∵ 已知条件 AB = AC + CD, 而 DE = DC + CE∴ AB = DE = AE∴ △ABE 是等腰三角形。∴ ∠ABE = ∠AEB = 40°更多Jerry的原原创 2022-01-02 21:38:30 · 1577 阅读 · 1 评论 -
关于日期的周期问题
问题错误解法一个月有31天,31 ÷ 7 = 4 余 3,因此这个月的周数等于 4 + 1 = 5,这个做法是错误的,因为一月份的开头或者结尾那一周可能根本就不满7天。一年有53个星期五和星期六,这一年的3月1日是星期几?一年有:365天:平年366天:闰年如果是平年:365 ÷ 7 = 52 余 1所以1年至少有52个完整的一周七天。如果1月1日是星期一,那么1月8日也是星期一:1 * 7 + 1那么1月15日也是星期一 2 * 7 + 1那么1月22日也是星期一 3 *原创 2021-12-20 18:54:03 · 2004 阅读 · 0 评论