Python
文章平均质量分 76
Python 编程实战
汪子熙
企业管理软件资深开发专家
展开
-
python 开发中识别和解决内存泄漏的技巧
Python 的内存管理机制虽然相对自动化,但依然可能因为全局变量、循环引用、文件未关闭以及不当使用缓存等原因引发内存泄漏。为了解决这些问题,开发者可以通过合理的代码设计,以及使用工具如gc模块、objgraph和来检测和解决内存泄漏问题。原创 2024-10-02 19:38:51 · 616 阅读 · 0 评论 -
如何使用 Python 读取数据量庞大的 excel 文件
通过上述几种方法,可以大幅优化使用 Python 读取大型 Excel 文件的性能。openpyxl适用于灵活处理.xlsx文件,pyxlsb则是处理.xlsb文件的利器,而使用dask可以分块读取并行处理大数据集。此外,如果可以转换文件格式,使用.csv是提升读取速度的有效途径。不同的方案适用于不同的场景,开发者可以根据具体需求选择最合适的解决方案。例如,当文件格式无法改变时,openpyxl结合pandas是一个相对平衡的选择,而在文件格式灵活的情况下,将.xlsx转为.csv并使用。原创 2024-09-30 12:14:30 · 1038 阅读 · 0 评论 -
如何使用 Python 读取数据量庞大的 excel 文件
通过上述几种方法,可以大幅优化使用 Python 读取大型 Excel 文件的性能。openpyxl适用于灵活处理.xlsx文件,pyxlsb则是处理.xlsb文件的利器,而使用dask可以分块读取并行处理大数据集。此外,如果可以转换文件格式,使用.csv是提升读取速度的有效途径。不同的方案适用于不同的场景,开发者可以根据具体需求选择最合适的解决方案。例如,当文件格式无法改变时,openpyxl结合pandas是一个相对平衡的选择,而在文件格式灵活的情况下,将.xlsx转为.csv并使用。原创 2024-09-30 12:13:19 · 1197 阅读 · 0 评论 -
python-pptx 中 placeholder 和 shape 有什么区别?
在库中,和shape是两个核心概念。虽然它们看起来相似,但在功能和作用上存在显著的区别。为了更好地理解这两个概念,我们可以通过它们的定义、使用场景以及实际代码示例来剖析其差异。原创 2024-09-30 12:10:52 · 1000 阅读 · 0 评论 -
如何评价 Python 语言的运行速度
一个显著的例子是在数值计算领域。NumPy 这样的库实际上是在底层调用 C 代码,利用 Python 的高层语法简洁性和 C 的底层性能,这就解释了为何即便 Python 本身的运行速度较慢,但通过合适的库,它依然可以在科学计算领域占据重要位置。JIT 编译使得 Java 的代码在首次执行时会有一定的性能开销,但随着程序的长时间运行,它的运行效率可以逐渐接近 C 语言的水平。对比 C++,这种语言有更复杂的语法和更多的底层控制,虽然可以带来更高的运行速度,但编写代码的难度显著增加,开发周期也更长。原创 2024-09-29 15:30:35 · 1000 阅读 · 0 评论 -
使用 Python 进行大规模数据处理
在 Python 中,将包含 100 万个元素的列表转换为DataFrame是一个常见的任务,尤其是在大数据处理的场景下。Pandas 提供了简单高效的工具来实现这一目标。通过直接使用可以快速完成转换,但当数据规模更大时,考虑使用分块处理、并行化处理或者其他库(如Dask)是值得推荐的优化策略。你还可以根据具体需求选择合适的优化方案,例如通过多进程并行处理加速数据转换,或者在数据转换之前进行校验与清理,确保数据的一致性和完整性。这些技巧不仅能够帮助你高效处理大规模数据,还能够确保数据质量和程序性能。原创 2024-09-29 14:13:16 · 1052 阅读 · 0 评论 -
python 自定义多线程的传参方式是什么
在自定义线程时,选择适当的传参方式对于代码的可维护性和健壮性非常重要。参数简单时,使用args和kwargs来传递参数是最直接的方式。它利用了的内置功能,减少了代码的复杂性。当需要线程间通信时,使用队列或其他同步原语(如EventSemaphore等)是一个更好的选择。队列可以保证线程安全地传递数据,避免了资源竞争问题。需要局部线程数据时提供了一种轻量级的方式来管理每个线程的独立数据。它非常适合处理线程特定的配置或状态。原创 2024-09-29 13:52:01 · 894 阅读 · 0 评论 -
如何使用 Python 代码绘制利润率的变化趋势图
今年,该公司的销售额仍然是 100 万元,但利润增加到了 44 万元,因此利润率为 44%。因此,利润率的变化也是 100%。通过这样的图表,我们可以直观地看到利润率的变化趋势,这有助于发现潜在的问题或机会。\text{变化量(百分比)} = \frac{\text{今年的利润率} - \text{上个月的利润率}}{\text{上个月的利润率}} \times 100%对于这个问题,我们需要计算今年的利润率与上个月的利润率之间的变化量。在这个案例中,今年的利润率为 44%,上个月的利润率为 22%。原创 2024-05-16 17:35:39 · 344 阅读 · 0 评论 -
Python GUI 设计的一个简单例子
pandef pan():returnreturnelse:tkinter.messagebox.showwarning("警告", "哼, 别想动我电脑")pan函数检查用户输入的内容。如果输入为exit,则设置flag_exit为True,可能表示退出程序。如果输入为p,则销毁 Tkinter 窗口。否则,显示一个警告消息框。这个脚本是一个综合性很强的例子,涵盖了图像处理、GUI 设计和简单的安全功能。原创 2024-04-15 18:53:06 · 340 阅读 · 0 评论 -
使用 Python 代码绘制莫尔斯玫瑰线(Morse Rose Curves)
莫尔斯玫瑰线可以通过以下等式表示:[r = cos(nθ + d)]。其中,r是极坐标中的半径,θ是角度,n和d是控制曲线形状的参数。在这个例子中,我们将让用户输入想要的n和d值,以探索不同的曲线形状。n = float(input(`请输入 n 的值(控制花瓣数量或形状):`))d = float(input(`请输入 d 的值(控制旋转):`))为了让绘制的莫尔斯玫瑰线更加美观,我们可以自定义一些绘图的样式,比如颜色、线宽等。原创 2024-03-30 20:30:40 · 327 阅读 · 0 评论 -
用 Python 绘制一朵花朵
莫尔斯玫瑰线可以通过以下等式表示:[r = cos(nθ + d)]。其中,r是极坐标中的半径,θ是角度,n和d是控制曲线形状的参数。在这个例子中,我们将让用户输入想要的n和d值,以探索不同的曲线形状。n = float(input(`请输入 n 的值(控制花瓣数量或形状):`))d = float(input(`请输入 d 的值(控制旋转):`))为了让绘制的莫尔斯玫瑰线更加美观,我们可以自定义一些绘图的样式,比如颜色、线宽等。原创 2024-03-31 05:30:00 · 996 阅读 · 0 评论 -
使用 Python 代码分析 GitHub 上的开源项目
在探讨如何使用 Python 代码分析 GitHub 上的开源项目之前,我们需要明白这个过程涉及到的关键技术和工具。分析 GitHub 上的开源项目通常意味着我们需要获取项目的元数据、源代码、贡献者信息、commit 历史、issues、pull requests 等信息。Python,作为一门功能强大的编程语言,通过各种库和 API,能够有效地帮助我们完成这项任务。原创 2024-03-24 10:41:12 · 348 阅读 · 0 评论 -
使用 Python 代码自动生成 ppt
Python 提供了强大的工具集,以支持从简单的数据可视化到复杂的交互式演示文稿的创建。选择哪个库取决于你的具体需求,比如演示的目标受众、内容的复杂度以及是否需要在线共享或交互。通过合理选择和结合使用这些工具,可以极大地提高演示文稿的质量和影响力,无论是在学术研究、企业汇报还是市场展示中。原创 2024-03-16 12:11:20 · 872 阅读 · 0 评论 -
如何使用 Python 代码绘制费马螺线
费马螺线(Fermat’s Spiral)也称为抛物线螺线,其在极坐标中的表示为[r^2 = a^2 \theta]。我们可以通过修改代码来正确地生成和绘制费马螺线。为了显示出完整的费马螺线形状,代码绘制了正向和反向两个方向的螺线。数组,然后根据费马螺线的极坐标方程计算每个点的半径。接着,通过极坐标到笛卡尔坐标的转换得到了每个点的。这段代码首先使用numpy生成了一个线性分布的。方法将图像保存为文件,并通过。原创 2024-03-15 22:13:58 · 346 阅读 · 0 评论 -
基于 Python 实现一个简单的 HTTP 服务器
HTTP 服务器工作在服务端,主要功能包括处理来自客户端的请求,管理网络资源,以及生成和发送响应给客户端。在实际应用中,HTTP 服务器不仅限于传输 HTML 文档;它还可以传送图片、视频、应用程序数据及更多类型的数据。这种服务器通常用于网站托管、API 提供以及数据传输等多种场景。举例说明,Apache HTTP Server 和 Nginx 是两个广泛使用的 HTTP 服务器软件。原创 2024-03-11 08:30:00 · 1942 阅读 · 0 评论 -
使用 Python 打印本机 Mac 地址
要实现获取本机 MAC 地址的功能,我们可以使用 Python 中的标准库。具体来说,uuid库能够提供获取 MAC 地址的方法,而socket和fcntl库则能够帮助我们在 Linux 系统上获取网络接口的详细信息,包括 MAC 地址。在这里,我将向你展示几种不同的方法来实现这一功能,并解释每种方法的工作原理以及它们之间的区别。原创 2024-03-09 12:43:42 · 357 阅读 · 0 评论 -
手撕红黑树 - 聊聊这个基本却又重要的数据结构
本文首先从红黑树概念的前置知识点二叉搜索树出发,接着介绍了红黑树这个二叉搜索树的增强变体,最后通过一段红黑树在模拟数据库索引中的 Python 源代码,给大家演示了红黑树这种数据结构在实际编程领域中的强大作用。原创 2024-03-06 17:30:00 · 962 阅读 · 0 评论 -
使用 Python 代码在 windows 控制台打印正弦三角函数
请记住,这是一种非常基础的表示方法,主要用于演示和教学目的。对于更复杂的图形绘制和数据可视化任务,通常推荐使用。需要一种不同的方法,因为我们不能使用标准的图形库来直接渲染图像。的图像,我们可以使用一些基础的 Python 代码来实现一个简单的文本图形。变量来改变图像的大小和波形的放大倍数,以更好地适应你的控制台窗口大小。这段代码会在你的控制台或命令行窗口中以文本方式绘制出一个。图像生成方法,它使用了 Python 的。的图像,我们可以使用 Python 的。请注意,直接在命令行中生成图形化的。原创 2024-03-05 15:14:29 · 408 阅读 · 0 评论 -
使用 Python 代码在 windows 控制台打印正弦三角函数
请记住,这是一种非常基础的表示方法,主要用于演示和教学目的。对于更复杂的图形绘制和数据可视化任务,通常推荐使用。需要一种不同的方法,因为我们不能使用标准的图形库来直接渲染图像。的图像,我们可以使用一些基础的 Python 代码来实现一个简单的文本图形。变量来改变图像的大小和波形的放大倍数,以更好地适应你的控制台窗口大小。这段代码会在你的控制台或命令行窗口中以文本方式绘制出一个。图像生成方法,它使用了 Python 的。的图像,我们可以使用 Python 的。请注意,直接在命令行中生成图形化的。原创 2024-03-05 15:13:03 · 337 阅读 · 0 评论 -
使用 Python 代码绘制三角函数并另存为图片文件
下面是一个简单的 Python 脚本,用于生成 sin(x) 的图像,并将图像保存为文件。之后,你可以使用你喜欢的图片查看器打开这个文件。的文件,你可以使用任何图片查看器软件来打开它。如果你使用的是 Jupyter notebook 或类似的环境,函数生成一系列的 x 值,范围从 -2π 到 2π。然后,对于这些 x 值,使用。会直接在你的 notebook 中显示图像,而无需使用外部图片查看器。函数计算对应的 y 值,即 sin(x)。如果你还没有安装,可以通过运行。请注意,这段代码假设你已经安装了。原创 2024-03-05 15:03:06 · 375 阅读 · 0 评论 -
使用 python 通过代理服务器访问网络
要使用不同的IP地址访问网站,你可以通过代理服务器来实现。Python的requests库支持通过代理访问网络资源,这是一种常见的做法。下面是一个基本示例,展示如何使用requests库通过不同的代理IP地址去访问一个网站。首先,确保你已经安装了requests库。请注意,这里的需要替换成你的代理服务器的IP地址和端口号。使用不同的IP地址访问网站通常是为了匿名化或绕过一些地理位置限制。但请确保你使用这种方法时遵守目标网站的使用条款和相关法律法规。原创 2024-02-18 22:15:34 · 485 阅读 · 0 评论 -
Tunnel connection failed - 503 Service Unavailable 错误修复
在面对的错误时,我们需要从多个角度来分析和解决问题。这个错误提示我们在尝试通过代理连接到目标网址时遇到了障碍,具体来说是由于代理服务器无法建立连接,返回了错误。这通常意味着代理服务器暂时无法处理请求。为了解决这个问题,我们将探讨一系列的解决方案,包括代理服务器配置、网络环境检查、请求设置优化等方面。原创 2024-02-18 22:12:11 · 532 阅读 · 0 评论 -
Python 代码使用代理服务器访问网络遇到连接无法建立的错误
解决通过代理访问 URL 时遇到的连接问题,需要系统地检查和排除各种可能的原因。从检查基本的代理服务器配置开始,到确保网络连接的有效性,再到使用最新版本的依赖库,每一步都是确保能够顺利通过代理服务器访问外部资源的关键。在这个过程中,耐心和细致是解决问题的重要因素。希望以上提供的方法能够帮助你解决遇到的问题。原创 2024-02-18 22:10:36 · 755 阅读 · 0 评论 -
EOF occurred in violation of protocol 错误消息
在某些情况下,服务器可能需要特定的请求头才能正确处理请求。尝试添加或修改请求头,如User-Agent,可以避免服务器对请求的拒绝。Win64;解决通过代理访问 HTTPS 资源时遇到的连接问题通常需要一系列的诊断和尝试。从检查代理设置开始,到更新相关软件,再到调整 SSL/TLS 配置,每一步都是解决问题的潜在关键。如果问题持续存在,继续寻求代理服务提供商或网络管理员的帮助可能是必要的。记得在处理此类问题时,耐心和细致是解决问题的重要因素。请注意,本文中的代码示例和建议需要根据您的具体情况进行调整。原创 2024-02-18 21:24:28 · 1533 阅读 · 0 评论 -
python urlopen 的使用方法介绍
通过这段代码,我们不仅学习了如何使用 Python 的标准库发起 HTTPS 请求,还深入了解了 SSL/TLS 通信的重要性和安全验证的必要性。安全通信不仅仅是加密传输,还包括验证通信双方的真实性,确保数据交换的安全性和可信度。尽管上述代码简短,但它触及了网络编程和信息安全的核心概念,提醒我们在开发过程中必须注意安全实践,防止潜在的安全风险。这段代码的讨论展示了在实际编程和网络安全实践中,理论知识和实际操作的紧密结合。原创 2024-02-18 21:23:56 · 960 阅读 · 0 评论 -
使用 Python 结合 Selenium 访问一个 url
本指南提供了使用 Python 和 Selenium 访问网页的基础知识。实际应用中,你可能需要根据具体需求调整代码,比如处理登录、爬取数据等。Selenium 提供了强大灵活的方式来自动化网页交云,但也请注意遵守网站的使用条款,避免进行过度的爬取或自动化操作。请记住,实际编码时要注意代码的可读性和维护性。注释你的代码,保持结构的清晰,这对于长期维护和团队协作至关重要。虽然。原创 2024-02-18 21:22:53 · 371 阅读 · 0 评论 -
关于使用 Python 和 Selenium chrome driver 访问 url 时修改 source ip 的问题
在讨论如何在使用 Python 和 Selenium 的 Chrome driver 访问一个 URL 时修改自己的 source IP 之前,我们必须理解几个核心概念。IP 地址是互联网上每个设备的唯一标识符,用于设备间的通信。通常情况下,一个设备的 IP 地址是由其互联网服务提供商(ISP)分配的,因此直接更改自己的实际 IP 地址并不简单。然而,有几种方法可以在网络通信中伪装或更改你的 IP 地址。原创 2024-02-18 21:20:23 · 1308 阅读 · 0 评论 -
在 Python 中迭代地遍历两个列表
在 Python 中迭代地遍历两个列表并同时进行操作是一种常见的需求,可以通过多种方法实现,包括使用内建函数zip(),列表推导式,以及更高级的迭代器和生成器。在这篇详细的指南中,我们将探索不同的方法来同时遍历两个列表,并执行各种操作。这些方法不仅高效而且灵活,能够满足多样化的编程需求。原创 2024-02-17 11:09:15 · 384 阅读 · 0 评论 -
关于 Python 在 for 循环里处理大数据的一些推荐方法
在处理大规模数据时,对于循环遍历,尤其是在Python中,需要考虑一些优化策略以提高效率。原创 2024-01-19 18:26:46 · 341 阅读 · 0 评论 -
手把手教你用 Python 去除图片和 PDF 水印
我们在平时的学习,工作和写作中,有时会遇到一些需要将图片的水印去除的场景。虽然网络上有很多免费或者付费的软件可以帮助我们去除图片水印,但作为程序员,我们完全可以自己动手编程实现。原创 2024-01-05 18:24:06 · 1807 阅读 · 0 评论 -
如何使用 Python 代码的 PIL 库读取和设置图像的像素内容
通过getpixel和putpixel方法,我们可以轻松访问和修改图像的像素数据,实现各种图像处理任务。这两个方法为图像处理提供了灵活性和定制性,使开发者能够根据具体需求对图像进行精细控制。在实际应用中,结合其他PIL库中的方法,可以实现更复杂的图像处理效果。原创 2024-01-01 11:33:37 · 536 阅读 · 0 评论 -
Python 工具库 itertools 的使用介绍
库是 Python 中一个强大而灵活的模块,提供了一系列用于高效处理迭代器和生成器的工具。它的设计理念是为了提供简单而优雅的方式来创建、操作和组合迭代器,从而让编写高效、可读性强的代码变得更加容易。它的设计目标是提供一种灵活且内存高效的方式来处理大规模数据集,特别是在需要惰性计算或需要处理无限序列的情况下。通过充分利用这些工具,开发者可以更加轻松地处理各种复杂的迭代逻辑,提高代码的可读性和可维护性。提供了多个函数,用于生成不同类型的组合迭代器,例如排列、组合、笛卡尔积等。包含一些用于操作迭代器的函数,如。原创 2024-01-01 10:03:00 · 877 阅读 · 0 评论 -
Python itertools 库里 product 函数的作用介绍
是一个强大的工具,用于生成可迭代对象的笛卡尔积。它的灵活性使得我们能够处理不同数量、不同类型的可迭代对象,并且可以通过设置repeat参数实现元素的重复。此外,懒惰计算的特性使得它在处理大规模数据时表现出色。这使得成为处理排列组合和迭代问题的重要工具之一。原创 2024-01-01 09:58:48 · 418 阅读 · 0 评论 -
Python PIL 库里 Image 函数的作用介绍
在本文中,我们详细介绍了Image模块的主要功能和常见用法。从打开和保存图像文件、基本操作、滤波和增强、像素级操作到文本和绘图,Image模块提供了丰富的功能,使得在Python中进行图像处理变得更加简便和灵活。通过合理组合这些功能,我们可以实现各种复杂的图像处理任务,从而满足不同应用场景的需求。希望本文能够帮助读者更好地理解和应用Image模块,提升在图像处理领域的实际应用能力。原创 2024-01-01 09:58:10 · 611 阅读 · 0 评论 -
Python 图片处理库的发展历史介绍
Python Imaging Library,简称 PIL,是 Python 最早也是最主要的图像处理库之一。Pxhere 随着时间的推移,它经历了许多的变化,包括新增功能、性能优化和与各种操作系统的兼容性问题解决等。这篇文章将从发展历程、主要应用范围及实例中介绍 PIL 的历史。PIL 的早期版本最初发布于1995年,由 Fredrik Lundh 开发,主要目标是提供一种统一的方式处理各种图像格式。原创 2023-12-30 22:43:27 · 362 阅读 · 0 评论 -
Python 图片处理,从 PIL 到 Pillow
PIL库(Python Imaging Library)是一个用于图像处理的Python库,它提供了许多功能强大的工具和算法,使开发者能够轻松地进行图像操作、处理和生成。然而,由于PIL的开发在2009年停止,Pillow库在此基础上诞生,由Alex Clark接手并继续发展,成为PIL的继任者,为Python社区提供了一个现代且活跃的图像处理解决方案。总体而言,Pillow库不仅继承了PIL的传统,还引入了许多新的特性,使得Python开发者能够更轻松地处理图像,从而满足了不断增长的图像处理需求。原创 2023-12-30 22:42:52 · 337 阅读 · 0 评论 -
关于 Python 处理 PDF 的库 pymupdf 介绍
是一个用于处理 PDF 文件的 Python 库,提供了丰富的功能和灵活的接口,使得在 Python 环境中处理 PDF 文件变得简单而强大。该库建立在 MuPDF 渲染引擎的基础上,MuPDF 是一款高性能的 PDF 渲染器,提供的一小部分功能,该库还支持更高级的特性,如注释的添加、旋转页面、获取链接等。由于 MuPDF 引擎的高效性能,在处理大型 PDF 文件时表现出色,适用于需要在 Python 中进行 PDF 文件处理的各种场景。将其封装成一个易于使用的 Python 模块。原创 2023-12-30 22:42:04 · 447 阅读 · 0 评论 -
如何使用 Python 爬取天气预报网站的内容,并通过邮件发送爬取结果到指定邮箱地址
本文是作者参加腾讯云社区选题互换赛解答的一道题目。题目为:如何使用Python 爬取网页(例如天气,每日问好等等)出题者的动机是:每天早上要和妹子说早安,想要做个定时任务,每天早上能自动爬取天气,发送天气问好邮件,希望大神支招。原创 2023-11-06 12:04:48 · 642 阅读 · 0 评论