详解动态规划石子合并问题(直线型, 环形)

题目描述

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,合并的花费为这相邻两堆之和

试设计出1个算法,计算出将N堆石子合并成1堆的最小花费和最大花费.

输入输出格式

输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输入示例
4
4 4 5 9
输出示例
43
54

算法分析

动态规划

  • dp[i][t]=min(dp[i][t],dp[i][k]+dp[(i+k-1)%n+1][t-k]+sum(i,t))

  • dp[ i ][ t ]表示从 第i堆开始之后合并t堆石子(包括第i堆石子)合并花费。

  • k是i~t之间的一个数

  • 因为是环形,所以要将一维数组收尾相连,所以计算第i+k堆应该表示成: (i+k-1)%n+1,注意这里 不能想当然的以为-1%n可以和外面的1约掉就变成(k+1)%n, 这里是因为数组的下标是从1开始的,
    前者可以保证不去到0.

  • sum表示最后两队合并时候的花费,一定等于所有石子的个数.

-则求dp[ i ][ n ]的最小解,1<=i<=n;

可以把dp[ i ][ n ]看成一堆,这一堆的最优解是由 由这堆分割的两小堆合并的。 然后每两小堆又可以再分,知道分成两堆的石子合并,前面这部分是分治法的思想, 但是值得注意的是选择不同的堆作为第一堆,得到的结果不一样,这样如果每个每种情况都像这样分,就会有很多重复的,以致时间复杂度达到指数级, 所以我们要想办法吧子问题的结果保留下来, 然后再得到最优解.这就是动态规划的思想. 最普遍的做法是自底向上将子问题的保存在数组中.

代码

#include<stdio.h>
#include<string.h>
#define Ma_x 99999
#define Mi_x 0 
#define min(a,b) a<b?a:b
#define max(a,b) a>b?a:b 

int n,w[200],dp[200][200],dq[200][200];//n表示堆数,w表示每队的数量,dp[i][j]表示从第i堆开始合并j堆(包括第i堆)后的最小花费 ,dq表示最大 

int sum(int i,int t){//从第i堆开始,t个石堆合,最后一次的合并的花费 
    int k,s=0,k1;
    for(k=i;k<i+t;k++){
        k1=k%n;
        if(k1==0) k1=n;
        s=s+w[k1];   //这t个石堆最好两堆合并时的花费一定是这t堆石子的总和 
    }
    return s;
}

int main(){
    int i,t,k;
    scanf("%d",&n);
    for(i=1;i<=n;i++){
        scanf("%d",&w[i]);
        dp[i][1]=0;//表示合并一堆的花费,没有合并则花费为0 
        dq[i][1]=0; 
	}
    //动态规划
    for(t=2;t<=n;t++){
        for(i=1;i<=n;i++){
            dp[i][t]=Ma_x;
            dq[i][t]=Mi_x; 
            for(k=1;k<t;k++){
                dp[i][t]=min(dp[i][t],dp[i][k]+dp[(i+k-1)%n+1][t-k]+sum(i,t));
                dq[i][t]=max(dq[i][t],dq[i][k]+dq[(i+k-1)%n+1][t-k]+sum(i,t));
			}
        }
    }
    int mini=Ma_x;
	int maxi=Mi_x; 
    for(i=1;i<=n;i++){//从第几堆石子开始结果最小 
        mini=min(mini,dp[i][n]);  
		maxi=max(maxi,dq[i][n]); 
    }
    printf("%d ",mini); 
    printf("%d ",maxi); 
} 

	 

直线型合并

直线型合并的和环形合并,区别有两点:

  • 不用将数组连起来
  • 最后的结果只有一种情况就是dp[i][n]
#include <iostream>
#include <stdio.h>
#include <string.h>
#define min(a,b) a<b?a:b
int a[50005];
int dp[505][505];
int sum[505];


int main()
{
    int n;
   scanf("%d",&n);

        for(int i=1; i<=n; i++)
        {
            scanf("%d",&a[i]);
            dp[i][i]=0;
            sum[i]+=a[i]+sum[i-1];
        }

        for(int l=1; l<=n-1; l++)//l是合并的次数

        {
            for(int i=1; i<=n-l; i++)//i是在当前合并次数下区间的首地址
            {
                int j=i+l;
                 dp[i][j]=9999;
                for(int k=1; k<=j-1; k++)//j是相应的末地址

                {
                    dp[i][j]=min(dp[i][j],(dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]));
                   
                }
            }
        }
        printf("%d\n",dp[1][n]);

    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值