题目描述
在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,合并的花费为这相邻两堆之和
试设计出1个算法,计算出将N堆石子合并成1堆的最小花费和最大花费.
输入输出格式
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.
输入示例
4
4 4 5 9
输出示例
43
54
算法分析
动态规划
-
dp[i][t]=min(dp[i][t],dp[i][k]+dp[(i+k-1)%n+1][t-k]+sum(i,t))
-
dp[ i ][ t ]表示从 第i堆开始之后合并t堆石子(包括第i堆石子)合并花费。
-
k是i~t之间的一个数
-
因为是环形,所以要将一维数组收尾相连,所以计算第i+k堆应该表示成: (i+k-1)%n+1,注意这里 不能想当然的以为-1%n可以和外面的1约掉就变成(k+1)%n, 这里是因为数组的下标是从1开始的,
前者可以保证不去到0. -
sum表示最后两队合并时候的花费,一定等于所有石子的个数.
-则求dp[ i ][ n ]的最小解,1<=i<=n;
可以把dp[ i ][ n ]看成一堆,这一堆的最优解是由 由这堆分割的两小堆合并的。 然后每两小堆又可以再分,知道分成两堆的石子合并,前面这部分是分治法的思想, 但是值得注意的是选择不同的堆作为第一堆,得到的结果不一样,这样如果每个每种情况都像这样分,就会有很多重复的,以致时间复杂度达到指数级, 所以我们要想办法吧子问题的结果保留下来, 然后再得到最优解.这就是动态规划的思想. 最普遍的做法是自底向上将子问题的保存在数组中.
代码
#include<stdio.h>
#include<string.h>
#define Ma_x 99999
#define Mi_x 0
#define min(a,b) a<b?a:b
#define max(a,b) a>b?a:b
int n,w[200],dp[200][200],dq[200][200];//n表示堆数,w表示每队的数量,dp[i][j]表示从第i堆开始合并j堆(包括第i堆)后的最小花费 ,dq表示最大
int sum(int i,int t){//从第i堆开始,t个石堆合,最后一次的合并的花费
int k,s=0,k1;
for(k=i;k<i+t;k++){
k1=k%n;
if(k1==0) k1=n;
s=s+w[k1]; //这t个石堆最好两堆合并时的花费一定是这t堆石子的总和
}
return s;
}
int main(){
int i,t,k;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&w[i]);
dp[i][1]=0;//表示合并一堆的花费,没有合并则花费为0
dq[i][1]=0;
}
//动态规划
for(t=2;t<=n;t++){
for(i=1;i<=n;i++){
dp[i][t]=Ma_x;
dq[i][t]=Mi_x;
for(k=1;k<t;k++){
dp[i][t]=min(dp[i][t],dp[i][k]+dp[(i+k-1)%n+1][t-k]+sum(i,t));
dq[i][t]=max(dq[i][t],dq[i][k]+dq[(i+k-1)%n+1][t-k]+sum(i,t));
}
}
}
int mini=Ma_x;
int maxi=Mi_x;
for(i=1;i<=n;i++){//从第几堆石子开始结果最小
mini=min(mini,dp[i][n]);
maxi=max(maxi,dq[i][n]);
}
printf("%d ",mini);
printf("%d ",maxi);
}
直线型合并
直线型合并的和环形合并,区别有两点:
- 不用将数组连起来
- 最后的结果只有一种情况就是dp[i][n]
#include <iostream>
#include <stdio.h>
#include <string.h>
#define min(a,b) a<b?a:b
int a[50005];
int dp[505][505];
int sum[505];
int main()
{
int n;
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
dp[i][i]=0;
sum[i]+=a[i]+sum[i-1];
}
for(int l=1; l<=n-1; l++)//l是合并的次数
{
for(int i=1; i<=n-l; i++)//i是在当前合并次数下区间的首地址
{
int j=i+l;
dp[i][j]=9999;
for(int k=1; k<=j-1; k++)//j是相应的末地址
{
dp[i][j]=min(dp[i][j],(dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]));
}
}
}
printf("%d\n",dp[1][n]);
return 0;
}