QNAP上Container Station卷volume的设置

我们想要的是,在docker中挂载一个QNAP上的自定义目录,或者卷,而不是使用docker中默认的存储位置。但找不到在哪里设置。

原因分析

主要是QNAP的文档写的不够详细,没有对卷的功能做详细的描述,还有就是这个设置隐藏太深,很难发现,导致很多人不知道如何映射QNAP的本地路径。

QNAP的官方文档对卷管理的介绍

 

 Container Station中对卷的设置非常容易引起歧义,这个地方的设置也简单粗暴,只有创建,操作中也只有移除,删除这两个简单操作。

 解决方法

实际上设置并不在“”这里,而在创建容器的时候,需要点这里的高级设置

 在高级设置中点击存储,然后点击添加卷右侧的下拉三角。

 选择绑定装载机主机路径。即可建立主机与容器的目录映射。

总结

这是一个非常非常常用的功能,为什么要隐藏这么深? QNAP的产品不该反思下吗,这么多年市场占有率上不去是有原因的。

 

### 部署AI大模型到NAS并建立本地数据库 #### 设备准备与环境配置 为了在 NAS 上成功部署大型 AI 机器学习模型,需确认所使用的 NAS 支持 Docker 或者虚拟机技术。这允许安装必要的依赖库而不影响现有系统稳定性[^1]。 #### 安装Docker容器服务 如果 NAS 已经支持 Docker,则可以直接跳过此步;如果不支持,则需要先启用该功能。具体操作方式取决于不同品牌型号的 NAS 设置界面,在 Synology DSM 中可以通过套件中心找到 Docker 并安装。 ```bash sudo apt-get update && sudo apt-get install docker.io -y ``` 对于 QNAP 用户来说,可以在 App Center 内搜索 "Container Station" 来获取相同的功能。 #### 获取预训练好的AI大模型镜像文件 利用官方提供的 TensorFlow/PyTorch 等框架下的公共仓库拉取已经完成训练的大规模人工智能算法作为基础版本: ```bash docker pull tensorflow/tensorflow:latest-gpu ``` 上述命令会下载最新版带有 GPU 加速特性的 Tensorflow 运行时环境至本地缓存区等待后续调用。 #### 创建持久化的存储用于保存权重参数及其他重要资料 考虑到每次重启容器都会丢失内部状态变化这一特性,建议提前规划好外部挂载路径以便长期维护项目成果: ```bash mkdir -p /volume1/docker_data/model_weights/ docker run -d \ --name ai_model_container \ -v /volume1/docker_data/model_weights/:/model_weights \ tensorflow/tensorflow:latest-gpu ``` 这里 `-v` 参数指定了宿主机上的目录映射关系,使得即使删除当前实例也能保留住之前积累下来的知识财富。 #### 构建适合特定应用场景的数据集结构体并与之交互 针对具体的业务需求收集整理相应的样本集合,并将其导入前述定义过的共享空间内供进一步加工处理。同时编写 Python 脚本读写接口方便日后扩展升级逻辑流程。 ```python import os from pathlib import Path data_dir = '/path/to/local/dataset' Path(data_dir).mkdir(parents=True, exist_ok=True) for file_name in ['train.csv', 'test.csv']: with open(os.path.join(data_dir, file_name), mode='w') as f: pass # Create empty files or populate them accordingly. ``` 以上代码片段展示了怎样快速搭建起一套简易但实用的小型文件系统来支撑整个实验周期内的各项活动开展。 #### 数据库的选择与集成 根据实际工作负载特点挑选合适的关系型或非关系型数据库产品进行耦合连接。例如 MySQL 是一种广泛应用于 Web 应用程序背后的传统解决方案之一;而对于 NoSQL 场景下 MongoDB 则更受青睐因为它能很好地适应半结构化文档式的表达形式[^3]。 假设选择了 SQLite 作为轻量级嵌入式 RDBMS 实现方案的话,那么只需要简单的几行 SQL 就可以建立起表单架构并且插入测试记录验证连通性良好与否: ```sql CREATE TABLE IF NOT EXISTS samples ( id INTEGER PRIMARY KEY AUTOINCREMENT, feature TEXT NOT NULL, label INT CHECK(label IN (0, 1)) ); INSERT INTO samples(feature, label) VALUES ('example_feature_value', 0); SELECT * FROM samples LIMIT 5; ``` 最后一步就是确保应用程序层面上能够顺利访问到底层基础设施所提供的各种服务能力了。这就涉及到 API 开发、前端展示等多个方面的工作内容不再赘述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孽小倩

非常荣幸能帮助到你

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值