彻底弄懂requires_grad,retain_graph,create_graph区别

retain_graphrequires_gradcreate_graph 是 PyTorch 中与自动求导相关的三个不同参数或属性。它们用于控制和管理计算图的行为,下面是它们的区别:

1. requires_grad

  • 属性:这是一个张量的属性,用于指示是否需要计算该张量的梯度。
  • 作用:当一个张量的 requires_grad=True 时,PyTorch 会跟踪所有对该张量的操作,从而可以在反向传播时自动计算梯度。
  • 应用场景:通常用于需要梯度的模型参数,或用于需要对其进行求导的输入张量。
import torch

x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = x * 2
print(y.requires_grad)  # True

2. create_graph

  • 参数:这是在 backwardtorch.autograd.grad 函数中使用的参数。
  • 作用:当 create_graph=True 时,PyTorch 会在计算梯度的过程中保留计算图,从而允许对这些梯度再进行求导(高阶导数)。
  • 应用场景:在需要计算高阶导数(如 Hessian 矩阵)时使用。
import torch

x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = x.pow(2).sum()
grad_params = torch.autograd.grad(y, x, create_graph=True)[0]
z = grad_params.pow(2).sum()
z.backward()
print(x.grad)  # None
print(x.grad_fn)  # <PowBackward0 object>

3. retain_graph

  • 参数:这是在 backwardtorch.autograd.grad 函数中使用的参数。
  • 作用:当 retain_graph=True 时,PyTorch 在反向传播之后不会释放计算图,允许你对同一个计算图进行多次反向传播。这对于需要多次计算梯度或高阶导数的情况很有用。
  • 应用场景:在需要多次使用相同计算图进行反向传播时使用,例如在训练中使用累积梯度或在计算高阶导数时。
import torch

x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = x.pow(2).sum()

y.backward(retain_graph=True)
print(x.grad)  # tensor([2.0, 4.0, 6.0])

# 由于 retain_graph=True,计算图没有被释放,可以再次调用 backward
y.backward()
print(x.grad)  # tensor([4.0, 8.0, 12.0])

区别总结

  1. requires_grad:控制张量是否需要梯度(在前向传播时设置)。
  2. create_graph:控制是否在反向传播时创建计算图,以允许计算高阶导数(在 backwardtorch.autograd.grad 中设置)。
  3. retain_graph:控制在反向传播后是否保留计算图,以允许多次反向传播(在 backwardtorch.autograd.grad 中设置)。

这些参数和属性在深度学习模型的训练和优化过程中,特别是在高级优化算法(如共轭梯度法)和高阶导数计算中起着关键作用。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值