Pr优先考虑用于建模现有工业设施的对象类型 s
伊娃·阿加帕基a , ⁎,格雷厄姆·米亚特b,伊奥annis·布里拉基斯a
a剑桥大学工程系,英国bAVEVA集团有限公司,英国
ARTICLEINFO
关键词 :建筑信息模型现有工 业设施建模时间自动化建模设 施管理扫描到BIM
摘要
对现有工业设施进行建模的成本目前抵消了这些模型所带来的效益。由于每个工厂中存在大量工业对象(IOs), 90%的建模成本都用于将点云数据转换为3D模型。因此,只有通过实现建模自动化才能降低成本。然而,由于类 别数量极多且类别之间高度相似,对数以百万计的工业对象进行自动分类是一个极具挑战性的分类问题。本文通 过以下方式应对这一挑战:(1)识别出最频繁出现的工业对象;(2)测量在最先进的软件EdgeWise中对这些 对象进行建模所需的人工时。这使得我们能够衡量(a)每种对象类型所消耗的总工时(TLH)以及(b) EdgeWise的性能。我们发现,管道、电气导管和圆管空心截面这三类对象占用了构建工厂模型所需总工时的 80%。我们还表明,EdgeWise在圆柱检测方面达到了75%的召回率和62%的精确率。本文首次识别出建模最耗 时的工业对象,也是首篇对最先进的工业建模软件进行评估的研究。这些发现有助于更深入理解该问题,并为有 意解决此问题的研究人员提供了基础。
1.引言
“现状”建筑信息模型(AI‐BIMs)是对现有设施状况的三维数字 化表示,包含不同聚合水平的几何定义和参数化规则[1]。绝大多数大 型炼油厂均建于1977年计算机辅助设计(CAD)出现之前:因此,这些 工厂缺乏可用于支持其维护操作的现状模型[2,3]。工业厂房的人工智 能‐建筑信息模型(AI‐BIMs)在多种应用中具有重大影响,包括维护、 运营的战略规划、改造目的、老旧厂区的翻新以及拆除前的准备工作[4– 7]。
缺乏人工智能‐建筑信息模型将导致这些运营出现时间滞后。这对于 工业经理至关重要,因为如果没有详细的规划,生产率将受到显著影响, 且约定的预算和时间表预期将无法实现。此外,可接受的停机时间存在 阈值,超过该阈值将会影响生产,并且违反这些限制将产生额外成本。 例如,Sanders[45] 报告称,对雪佛龙工厂进行翻新的总三维建模成 本中,有40%用于数据处理劳动力,且为了规避额外成本,停机时间被 限制在72小时内。每节省一小时的建模时间,都可以防止关键故障或意 外事故的发生,从而确保这些资产的连续生产流程。本研究旨在协助改 善当前这一领域繁琐的实践工作。
建模人员使用以下四个主要步骤来手动处理AI‐BIM:(a)数据采 集,(b)点云配准,(c)几何建模,以及(d)添加附属信息。最初, 通过激光扫描仪和摄影测量技术采集数据,这些数据以笛卡尔坐标或极 坐标表示,形成点云,有时还包含颜色数据(RGB)。需要通过计算扫 描间刚体变换将各次扫描数据配准到统一坐标系中,配准后的点云代表 完整的测量数据。然后需要对这些数据进行几何建模。
几何建模包括(a)基本形状检测,(b)对检测到的形状进行语义 分类,以及(c)拟合。首先,检测并分类基本形状(例如圆柱体、环 面、平面),将其识别为特定对象(例如管道、弯头、工字梁)。随后, 将这些基本形状拟合到已知的实体形状上,以获取其几何参数。为了在 工业基础类架构(IFC)格式中生成完整的建筑信息模型(BIM),还 需要获取这些对象与其他物体的关系。IFC架构是一个与软件无关的平 台,能够使几何信息、材料信息及其他建筑相关信息共存于单一模型中。
几何建模是任何工业设施在Scan‐to‐BIM建模过程中的“瓶颈”, 因为该过程成本高昂且耗时。最近的研究报告指出,几何处理占建模时 间的90%[8,9]。Hullo等人[9] 报告称,需要10名操作员来处理核反 应堆的1084次扫描 https://doi.org/10.1016/j.autcon.2018.09.011 2018年1月22日收到;2018年6月20日修订后收到;2018年9月 19日接受 ⁎ C通讯作者。 E电子邮件地址: ea437@cam.ac.uk (E.Agapaki), Graham.Miatt@aveva.com (G.Miatt), ib304@cam.ac.uk (I.Brilakis)。 《建筑自动化》96期(2018年)211–223页 0926‐5805/©2018ElsevierB.V.保留所有权利。 T 本文档由funstory.ai的开源PDF翻译库BabelDOCv0.5.10(http://yadt.io)翻译,本仓库正在积极的建设当中,欢迎star和关注。
使用达索系统SolidWorks和天宝Realworks对其对象进行建模大约需 要6个月。相比之下,工厂的激光扫描仅用了35天就完成了。为大量工 业对象建模所需的大量时间阻碍了这些工厂采用现状三维建模。
本文所呈现的研究具有探索性,而非因果性。它并不旨在解决工业 设施建模自动化的问题,而是旨在增进我们对该问题及其迄今已解决程 度的理解,并为未来有兴趣解决该问题的研究者提供基础。因此,本文 的主要目标是识别最重要的工业对象类型,鉴于其在建模中的频率和耗 时程度,并衡量现有工具在建模这些特定对象类型方面的性能。作者基 于对多种工业厂房中三维建模的工业对象进行的基于频率的统计分析, 确定了最频繁出现的对象。随后,这些最频繁的对象在最先进的半自动 化建模软件EdgeWise中进行了建模,并测量了其建模时间。最后,根 据出现频率和平均建模时间对最重要的工业对象类型进行了排名。该分 析将极大地有助于自动化建模工作,有效减少建模时间并促进设施管理。
2.背景
工业厂房可分为十五个主要类别[10]:(a)陆上和(b)海上石 油平台,(c)化工,(d)采矿,(e)制药厂,(f)发电厂,(g) 给水与污水处理设施,(h)天然气处理和生物化工厂,(i)炼油厂, (j)食品加工厂,(k)国防设施,(l)金属生产设施,(m)核电站, (n)科研设施以及(o)仓库和筒仓。工业设施的对象类型属于以下主 要对象类别:(a)结构构件,(b)管道系统,(c)电气,(d)安全, (e)通用设备,(f)建筑构件,(g)仪表,(h)暖通空调( HVAC)以及(i)土建元素。结构构件的代表性示例包括路障、走道、 模块桩基、钢平台、楼梯、管架、支撑和钢结构构件。相应地,安全设 备示例包括喷淋系统、摄像头、灭火器、消防辅助站和火灾探测器。通 用设备包括起重装置、泵、压缩机、储罐、涡轮机、容器、脱气器、空 冷器、排水器、热水回收装置和换热器。土建元素包括路缘石、基础和 护柱。建筑构件的示例有窗户、楼板和墙体。仪表包括传感器(温度、 压力等)和控制器。电气设备的典型示例包括电缆桥架、导管、配电柜、 电源插座和照明灯。
2.1.建模工业对象类型的价值
佩蒂让[11]证明,工业场景中85%的对象可以由平面、球体、圆 锥和圆柱近似表示。然而,这些基本几何形状尚未被分配到特定的工业 对象类型。对这些对象进行建模的价值体现在安全、维护和翻新方面 [12]。针对工业厂房的人工智能‐建筑信息模型对设施管理人员具有重 要意义,因为这些模型有助于他们在涉及维护、运营以及健康与安全的 决策中更加主动。英国特许建筑学会的近期研究[13]表明,到2050年, 对93%的现有工业设施进行翻新和改造的需求将成为英国建筑业的主要 关注点。因此,利用数字化技术对这些资产进行建模已成为迫切需求。
已有大量研究致力于在上述建模价值下识别关键工业对象[14–20]。 故障易损性通过故障率指标来衡量。名义平均故障率(λ 0 )是指工业对 象的频率 类型或对象组件发生故障,通常以每年故障次数[17]表示。电气部件 故障的样本数据可以从不同的数据源合并,计算平均故障率是合理的。 莫斯和斯特拉特[17] 列出了影响工业设施中机械部件平均故障率的多 个因素。这些因素描述了设计、设备尺寸、环境条件以及对象相对于其 机械承载能力的运行水平[17]。例如,受更恶劣天气条件影响的户外设 施更容易发生锈蚀。该论文还规定了根据上述因素调整组件标准寿命的 修正系数。特别是对于化工厂和海上平台,由于环境条件和重型设备运 行的影响,相较于一般工业条件,这些因素会提高机械部件的标称平均 故障率。钢构件也因所施加的荷载和焊接情况而在疲劳和火灾方面显得 尤为关键[14,15]。
工业对象类型的 关键性 被定义为工厂中某个 工业对象 或 工艺管线 发生 故障 的可能性与其 故障后果 的乘积[19]。目前 文献中存在三种用于评估工厂 危害 并分析事故 后果 的方法,分 别为 危险与可操作性分析(HAZOP) 、 失效模式与影响分析( FMEA) [16]和 故障树分析(FTA) [18]。然而,目前尚缺乏一 项合理的研究,来明确为了 维护、安全或改造目的 应优先对哪些关 键 对象 进行建模。
应考虑的关键对象类型示例如下。出于安全目的,危险子系统应以 更精细的细节进行建模。高度危险对象类型包括分离器、压缩机、干燥 器和闪蒸罐,而中等危险对象则包括管道系统和泵[20]。危险设备元 件的识别将显著改善安全管理。
阀门几乎是所有化工过程控制回路中的最终控制元件,用于调节管 道系统中的流量。在检查过程中,如果无法快速定位和识别控制阀和安 全阀,可能会导致严重损害,甚至引发前所未有的重大灾难,如得克萨 斯城炼油厂[21] 或派珀·阿尔法[22]。由于检查不力和维护不足而导 致的安全系统缺陷,已被报告为上述灾难性事件的主要因素之一。
工业设施中的另一项重要控制措施是管道系统和管架的维护。对于 输送易燃、危险或有毒物质的隔热管道和管道系统,检查尤为重要。检 验人员在进行管道系统维护时最关注的问题之一是腐蚀。公称通径( NB)>2 in.(50mm)的管道被认为是腐蚀的关键部位[23]。
钢结构和设备对于工厂的结构稳定性以及油气生产至关重要,尤其 是在火灾情况下。鉴于炼油厂的生命周期较短,通常为15至30年,结构 设计面临挑战,因为布局应具备灵活性和可扩展性[24]。管道的抗震和 节能改造是工业厂房中典型的改造作业[25]。如果能够创建这些对象的 精确现状模型,人工智能‐建筑信息模型将能显著支持这些改造作业。
表1根据故障率总结了每个类别(维护、安全和改造)的关键要素 λ 0 (高、中、低影响),依据为乌玛尔[20]和基利等人[26]。这些数 值是针对涉及危险物质并对人员和/或环境造成严重损害的重大事故计算 得出的。管道系统通常根据其外径(OD)分为两个有意义的子组:小 口径管道指外径小于或等于2英寸(50.8毫米)的管道,其余(外径大 于2英寸)>2的管道被视为大口径管道。表1显示,小口径管道系统的 影响高于大口径管道。表1中列出的一些类别虽关键但不常发生,因此未 出现在表1中。表3–5。
关键工业对象类型已在文献中进行了研究。然而,由于某些类型需 要进行自动化建模,因此
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
212
建模时间的增加和出现频率尚未被确定。如果某种对象类型虽关键但不 频繁,则无需对其进行自动建模。另一方面,即使某个对象对建模具有 价值但出现频率不高,本文也不将其纳入自动化建模的考虑范围。工业 对象要被考虑用于自动化建模,首要条件是根据其出现频率被列入优先 列表中。
2.2.基于频率的研究
目前没有实质性研究根据工业对象的出现频率来对其进行优先级排 序,如第2.1节所述,但存在一些相关领域,在这些领域中会考虑对象重 要性以进行对象分类[27,28]。SceneParse150[28]是一个图像数据 集,属于ADE20K的一部分,用于图像分类,包含八种最常见的对象类 别(“人”、“建筑”、“汽车”、“椅子”、“桌子”、“沙发”、 “床”、“灯”)以及在各种日常场景中发现的这150个对象。与 ImageNet[29]和Pascal[30],等其他基准数据集相比,该数据集的 独特之处在于所选图像中出现的对象分布具有多样性,能够模拟日常场 景中的对象出现情况。然而,该数据集仅限于日常场景,并未扩展到工 业设施。因此,工业场景中最常见对象类型的统计数据尚未确定。因此, 识别工业厂房中最常见的对象类型有助于多分类器的应用,并使复杂的 多分类问题变得可解。随后,研究人员可以将检测工作集中在那些占用 最多人工劳动时间的最常见对象类别上,从而使用户手动建模那些建模 时间较短的对象。基于频率的研究结果的应用将指导研究人员在工业场 景中自动检测和分类这些对象。针对对工业设施运行至关重要、在工业 厂房中频繁出现且建模耗时的对象类别建立训练库,将有助于实现多分 类器对这些类别的自动化建模。
2.3.工业厂区自动化建模
2.3.1.最先进的软件
工厂建模的下一个挑战在于,几乎所有可用的建模工具在大多数建 模任务中都依赖人工干预。领先的三维CAD软件(欧特克、奔特力、剑 维软件和法如)已开发出包含多种功能的程序,能够从三维点云中实现 管道建模。目前仅有少数软件包实现了自动化检测。例如,配合法如的 PointSensePlant插件使用的AutoCADPlant3D可实现从点云进行半 自动化管道建模。PointSensePlant提供了多种功能以及一个大型标准 库,其中包含各种可用于从三维点云中检测管道系统的管道和结构部件。 此外,模板对象拟合扫描的三维对象可自动完成,并可通过施加约束来 修正拟合过程中可能出现的误差。PointSensePlant17.5已集成一个预 计算工具,该工具可检测特定区域点云中的圆柱体,并具备按偏差对点 云进行着色的功能。
来自参考几何体[31]。然而,用户仍然需要手动对现状管道进行建模, 通过在分割后的三维点云中查找插入点以拟合计算机辅助设计对象,且 未提供提取出的圆柱体的拟合误差。“Walk the Run”功能更倾向于为 管道插入点提供建议,而非自动化管道建模工具。
EdgeWise是另一个被广泛使用的半自动化平台。Pointsense和 EdgeWise的主要区别在于,使用前者的建模人员需要手动提取对象所 需的边界,之后软件将自动提取正确的尺寸和位置。然而,这一过程由 EdgeWise自动完成,因此它被选为评估最常见工业对象类型的最合适 工具,相关内容将在第3.4节中介绍。所有可用的软件包中,结构构件 都是手动建模的。用户选择的基本体(例如圆管空心截面、长方体、环 面等)的拟合由EdgeWise和PointSensePlant自动执行。迄今为止, 尚无人对最先进的工具提供可行且准确的评估。
2.3.2.研究现状
在管道检测方面的前沿研究工作仅部分解决了该问题,与 EdgeWise等商业可用软件相比进展有限[32–34]。例如,Ahmed等 人[32]仅能检测正交方向的管道。Patil等人[33]最近的一项研究依赖 于半径和法向量估计的阈值。管道半径范围为0.0254m至0.762m, 法向偏差为5°。因此,Patil等人的研究无法推广应用于管道检测。他 们基于Rabbani等人[5]改进的霍夫变换在两个样本数据集中实现了 60%的召回率和89%的精确率。Sharif等人[34]提出了一种基于模 型的圆柱形与结构物体检测方法,通过将获取的点云数据特征与库生成 的点云模型特征进行匹配来实现。然而,其实验仅限于小规模的管道管 段和结构框架。
工业场景的先验知识已帮助研究人员检测工业对象。Son等人[6] 利用先验知识(管道和仪表图,P&ID)来检测机电管道设备(MEP)。 然而,实际的P&ID通常在工业厂房中无法获取,因此不能反映工厂在 其生命周期中所经历的修改。正因如此,先验知识不能依赖于P&ID。 Perez‐Gallardo等人[35]利用拓扑信息为四类对象提取语义标签:管 道、平面、弯头和阀门。他们检测圆柱体的精确率为86%,召回率为 92%。然而,他们的语义标签假设所有圆柱形物体均为管道,并未探究 具有相同形状的其他潜在对象类别。
3.研究方法
3.1.知识空白与研究问题
考虑到上述实践现状和研究综述,现有针对工业厂房的现状建模的 研究主要集中在圆柱形对象的自动化检测上,且未提供对现有最先进的 软件工具的科学且可行的评估。
表1面向设施管理的建模价值关键对象类型列表。
建模价值 高影响 (λ0 ≥10−4)yr−1 中等影响 (10−5 ≤λ0 ≤10−4)yr−1 低影响 (λ0 ≤10−5)yr−1
维护 阀门 小口径直管 大口径直管
安全 分离器、往复式压缩机、干燥器和闪蒸 鼓体、阀门、大型容器、储罐、电气导管, 断路器 3毫米直径直管、泵, 往复式压缩机 4毫米直径直管、25毫米直径 直管、33毫米直径直管, 压力容器和球形容器
改造 – 3毫米直径直管 4毫米直径直管、25毫米直径 直管、33毫米直径直管
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
213
工具方面尚未提供科学且可行的评估。关键工业对象类型已根据其建模 价值在文献中被识别,但尚无科学研究探讨这些对象类型的建模。因此, 以下问题仍不明确:(1)哪些工业对象类型对自动化建模至关重要; (2)使用最先进的软件对这些对象进行建模所需的时间;(3)最先进 的软件所达到的自动化水平。
本研究旨在通过回答以下研究问题来弥补知识上的空白:
a)哪些工业对象类型在建模价值、出现频率和建模时间方面最为重要?
b)在最先进的软件中对最常见对象类型进行建模所需的时间是多少?
c)如何评估最先进的现状建模工具在实现对象自动检测方面的性能?
本文开展的研究具有探索性,遵循图1所示的方法论框架。图1。我 们通过在样本案例研究中基于三维建模的工业对象的平均出现频率对其 进行分层排序,分析了从按设计BIM模型获得的三维建模的工业对象的 数量。随后,在EdgeWise中对最常见对象类型进行建模,以测量每种 类型建模所需的时间。我们将那些出现频率最高且建模最耗时的对象类 型确定为最重要的对象类型。然后,将圆柱形物体手动建模所需时间与 在EdgeWise中测得的时间进行了比较。
3.2.数据采集和假设
对五个已进行3D建模的工业设施案例研究进行了分析,以找出工业 设施中对象类型的统计代表性样本。其中三个案例研究为海上平台,一 个为石化厂,第五个为食品加工炼油厂(糖厂)。本研究中所考察的海 上平台子类别包括:(a)重力式结构(GBS),(b)张力腿平台(TLP) 和(c)固定平台。这些设施均已匿名化处理,因为其版权由AVEVA集团 有限公司和英国石油公司所有。 (BP)。糖厂和化工厂中的对象总数分别为22,143和240,687个对象。 GBS、TLP和固定平台分别拥有577,237、434,780和34,089个对象。
由于缺乏数据,对海上平台和糖厂的电气、安全设备、暖通空调及 土建类别进行了假设。对于电气和暖通空调类别的假设是合理的,因为 管道网络和管件可以通过导管以及阀门/法兰进行模拟。石化厂中这些类 别的百分比被用于计算其他案例研究中的相应百分比。例如,在电气设 备方面,假设张力腿平台中存在石化厂总对象数量约27%的电气设备, 该平台在结构、管道系统、设备、建筑和仪表类别中共有289,943个对 象。这些类别占设施中总对象数量的67%,本例中总数为434,780,假 设安全对象约占6%,暖通空调占0.6%,土木占0.05%。同样的方法也 用于确定其他案例研究中缺失类别的对象数量。
本研究并非旨在精确到小数点地统计工业对象类别和对象类型的数 量,而是提出在自动化建模中需要优先考虑的最常见对象类别和对象类 型。为此,所选数据集代表了不同类型的设施,其对象总数相差几个数 量级。因此,可以合理假设,即使增加更多设施进行评估,对象类别的 排名也不会有显著差异。
在我们调查的大多数已设计BIM模型中(如上所述,五个已设计模 型中有四个),安全设备(喷淋系统、摄像头、灭火器、消防辅助站和 火灾探测器)、土建元素(路缘石、基础、护柱)以及暖通空调均未被 建模。安全设备、土建元素和暖通空调约占石化厂对象总数的6%,该 假设也被应用于其他数据集。
在建模时,电气设备占比较大(占石化厂建模工业对象总数的27%)。 我们在所有案例研究均有统计数据的对象类别中,观察了平均出现频率 与对象总数之间的相关性。并对工厂可能拥有的工业对象总数进行敏感 性分析,以观察每个对象类别的百分比范围。图2显示了基于工业厂房 设计阶段建筑信息模型统计数据分析得出的平均曲线。
图2所示的结果表明,随着对象总数的增加,对象类别的优先级顺 序并未发生变化。因此,可以合理假设,在对电气设备进行建模时,其 相对于其他类别的层级顺序在不同工厂之间将保持一致。对于建模人员 忽略电气设备建模的情况,这并不表示现有工业厂房中不存在电气设备。
对象总数的范围基于现有数据集定义(1.5 ∗ 10 4 –6 ∗ 10 5个对象)。 根据我们的数据,对象类别出现的平均频率是线性函数,如图2所示, 管道系统和结构构件的对象类型如图3(a)和(b)所示。设备、建筑构件和 仪表在所有案例研究中占<5%。
这些观察结果证实了对于数据未知类别的平均出现频率的假设,因 为平均出现频率在对象优先级列表发生变化时保持不变。这意味着,除 了管道系统和结构构件外,对象类别的优先级不会随着对象总数的增加 而改变。我们发现,当对象数量超过240,200时,这两个类别发生重叠, 并且其层级顺序在此阈值之上发生反转。根据我们的数据,管道构件和 结构构件的比例在20%到40%之间变化。
图1.研究方法。
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
214
鉴于对象总数的可变性超过一个数量级,出现频率的方差是合理的。尽 管存在频率上的差异,对象总数与对象类别优先级之间的相关性并不显 著。这意味着,除管道和结构构件外,最常见对象类型的层级顺序不会 随着工业对象总数的变化而改变。
未观察到工厂规模与出现频率之间的相关性。相较于对象总数,工 厂规模并无明确定义。对象类别的结果显示,除结构构件呈上升趋势外, 其余均随对象总数增加而呈现下降趋势。除实心棒材和工字梁的平均频 率随对象总数增加而上升外,所有其他对象类型均表现出相同的趋势。
3.3.最常见的工业对象类别
需要建模的对象类别通过在典型工业工厂中遇到的所有对象类别的 出现频率上实施统计分析来确定。出现频率的计算方法是将每个对象类 别的总数量(ni=Si、Pi、Ei等,具体取决于类别)除以所有案例研究中 同一对象类别的对象总数(Ni)。每个对象类别的总数量是通过在使用 Everything3D[36]软件设计的三维模型中运行可编程宏语言( PML)脚本计算得出的。该脚本的伪代码如算法1所示,用于统计已建 模的管道、结构构件和设备的数量。其余对象类型的数量也以相同方式 计算。管长对应于在场外制造的预制管道管段的长度,其供应的切割长 度包括单倍定尺和双倍定尺[37]。前者平均通常为16–20英尺,而后者 平均长度为35–40英尺[37,38]。
算法1.用于从3D建模的工业厂房中获取对象数量的伪代码。
图2.工业厂房五个案例研究中,工业对象类别相对于对象总数的估计出现频率 (%)。
图3(a)和(b)工业厂房五个案例研究中,工业对象类型相对于对象总数的出现频率估计值(%)。
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
215
随后列出了这些类别中最常见的对象类型。以下给出了五个案例研 究之间各对象类别的项目间标准误差(S.E.)[39]: = = S E z p p n .. (1 ) k k k k 1 5 1 5 (1) 其中,k ϵ[1;5]针对每个独立的案例研究,p k表示在案例研究k中每个 对象类别的出现概率,nk表示每个类别中的对象数量,而z表示对应于 高斯分布置信水平的Z分数。
对象类别的排名按所有案例研究中的降序计算,如表2所示。结构 构件在所有案例研究中出现频率最高,平均频率约为33%。管道系统和 电气设备分别以28%和27%的百分比紧随其后。这些统计数据非常重要, 因为大多数软件包和研究方法仅针对管道、电气导管和圆形空心截面 (CHSs)的建模自动化,而这些均为圆柱形对象。每个对象类别均遵 循二项分布,其中N为本研究五个项目中所有独立对象类别的对象总数 (共计1,308,936个),pi为特定对象类别i出现的概率。当满足以下条 件时,二项分布可近似为高斯分布[40]: > N i30 (2) > N p 5 i i (3) > N p (1 ) 5 i i (4) 结果表明,所有对象类别的条件均满足,因此对高斯分布的近似是 有效的。每个对象类别的样本量、样本均值的标准差和标准误差也在表2中给出。对象类别i的样本量定义为[39]: = n Np i i i (5) 其中p i表示对象类别 i ϵ[1的出现频率;9],因为每个案例研究中有九个 独立的对象类别。
每个对象类别的标准差和标准误差使用二项分布的公式([39,46) 计算:i = Np p (1 ) i i i (6) = S E z n ..i i i (7) 标准误差用于估计基于总体均值的样本均值的标准差。该定义意味 着样本服从高斯分布[39] ,如上文所证明。标准
结构类别的偏差为540个对象,这意味着与其他对象类别相比,该项目 所有项目的均值(437,530 ± 540个对象)的方差较高,但与均值的 量级相比则较低。所有对象类别的95%置信水平下的标准误差都很低, 意味着所有对象类别的样本均值接近总体均值(1,308,936个对象)。例 如,如果考虑更多每个对象类别的样本,则有95%的置信水平认为其平 均出现频率将与本文计算的结果相同。如表2所示,所有对象类别的项 目间标准误差几乎可以忽略不计,表明同一对象类别在不同案例研究之 间的对象数量变异性非常低。
3.4.最常见的工业对象类型
这些设施中建模对象的最常见对象类别约占所有对象的90%,分别 为:结构构件、管道系统和电气设备。进一步研究了这些类别中存在的 对象类型。表3、4和5展示了属于这些类别的对象类型的优先列表,其 统计特性与对象类别的评估相同。
结果表明,圆形空心截面(CHSs)是这些研究中出现频率最高的 结构构件,平均占比约为19%(表3)。它们是该类别中标准差(261个 对象)和项目间标准误差(~1.8 ∗10−2)最高的对象类型之一,这意味 着与其他对象类型相比,其在五个案例研究中的分布相对于样本均值 (84,688个对象)差异较大。然而,标准差比样本量(n)低两个数量 级,表明平均出现频率不受样本量影响,且样本量足够大,能够提供准 确的结果。槽钢截面、实心棒材和工字梁分别以约14%、13.5%和13% 紧随其后。
管道对象的优先列表也在表4中提供。直管占该类别总对象数的一 半以上(52.1%),与结构对象相比,其标准差略高(303个对象)。 弯头和法兰分别以19%和12%紧随其后,且标准差较低。
电气设备主要由石化厂中的导管(90.2%)组成,如表5所示。假 设每个项目中电气设备的比例在所有案例研究中均相同,因此项目间标 准误差为零。
与所有其他类别相比,电气设备在95%置信水平下的标准误差范围 最大,表明所研究的五个案例研究中对象总数的规模存在差异。所考虑 样本的标准差为
表2所有案例研究的对象类别的优先列表。
对象类别 频率的 外观 (平均)(%) 样本 大小(n) 标准 偏差 (平均值) 标准误差 ( 95% 置信 水平)
结构 33.40 437,530 540 0.92
管道 28.20 368,428 515 0.88
电气 26.90 352,170 507 0.87
安全 5.70 74,860 266 0.46
设备 2.80 36,310 188 0.32
建筑 2.00 24,557 160 0.27
HVAC 0.60 8431 81 0.14
仪表 0.50 6066 88 0.15
土木 0.04 584 21 0.04
表3所有案例研究中结构元素类别的对象优先级列表。
结构 对象类型 出现频率 出现 (平均值)( % ) 样本 大小(n) 标准 偏差 (平均值) 标准 误差(95% 置信 水平) 项目间 标准 误差
CHS a 19.4 84,688 261 0.8 1.77 ∗10 −2
通道 14.3 62,634 232 0.7 1.72 ∗10 −2
b 矩形空心 截面(RHS)。 c 平行翼缘T型钢( PFT)。
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
216
与样本量相比,数量级也较低,因此平均出现频率是一个可靠的估计值。 该统计分析给出了在工业厂房建模中最关键的对象类别中出现频率 最高的对象类型,如表1所示。根据结果,最常见的类别为结构构件、 管道系统和电气设备。这些类别约占工业设施中所有对象的90%,且每 个对象类别的样本量足够大,能够提供具有代表性的结果。这些类别中 最常见的对象类型按频率从高到低依次为:电气导管、直管、圆管空心 截面、弯头、槽钢、实心棒材、工字梁、角钢、法兰和阀门。结果见表 6。值得注意的是,我们的数据集中其余的对象类型仅占对象总数的<1 %,因此在分析中被忽略。
图4展示了五个案例研究中按排名排列的对象类型及其相应的平均 频率分布。该分布遵循齐普夫定律[41],通常在日常场景中出现,如 第2.2节所述第2.2节。这意味着工业对象的平均数量与其排名成反比。 因此,最常见的对象类别(电气导管)出现的频率大约是第二常见类别 (直管)的两倍,是第三常见类别(圆管型钢(CHS))的三倍,依此 类推。前10个按排名排序的对象类型可用于自动化建模。该工业对象库 可作为训练机器学习算法所用的数据集。对这些类别的自动化建模将显 著减轻建模人员繁琐的工作负担,有效减少建模时间,而建模人员只需 干预少量不常见的对象类型。
3.5.管道建模的EdgeWise评估
使用了四个样本点云数据集来评估水平 EdgeWise的自动化,并获取在第3.4节中确定的最常见对象类型的建模 时间。图5显示了本次评估所使用的样本数据集。两个案例研究为工业 设施中的房间,其中一个为位于剑桥(英国)的水处理设施,第四个为 石化厂的一个房间。由于AVEVA集团有限公司版权所有,工业设施和 石化厂的信息已匿名化处理。剑桥的水处理设施由作者团队进行激光扫 描。
管道建模得益于EdgeWise提供的圆柱体自动提取功能。扫描数据 在配备CPUIntel® CoreTMi7‐4790K4.00GHz、32GB内存和 Windows1064位操作系统的台式计算机上进行处理。使用上述操作系 统对样本数据集执行此操作的平均处理时间为3.3 ∗ 10 −3分钟/(圆柱体 ∗ 点),如表9所示。所用所有数据集的平均点数为2.58亿,每个 数据集的点数见表7。圆柱体和管道的平均直径出于评估目的列于表8中。
我们将圆柱体提取的参数设置为至少80个点,以检测管道,并将距 离公差设为0.7 ∗10 −3 m。该软件识别管道系统的最小阈值为50个点, 但如果设置过低的值,自动提取工具会将噪声和错误特征误识别为管道。 距离公差是一个参数,用于确定三维点距离圆柱体多远时仍不会被排除 在提取算法之外。此处采用默认值0.7 ∗ 10 −3 m,该值来自一台具有高 精度和低噪声的扫描仪[42]。
表4所有案例研究中管道元件类别的对象优先级列表。
管道 对象 type 频率的 外(观平均)(%) 大样小本(n)标准 偏差 误标差准(95% 置信 水平) 项目间 标准 误差
直管 pipe 52.1 192,081 303 1.0 1.56 ∗10−2
弯头 19.3 70,945 239 0.8 1.25 ∗10−2
法兰 11.8 43,308 195 0.6 1.09 ∗10−2
三通& Olet 6.1 22,460 145 0.5 0.81 ∗10−2
阀门 5.6 20,591 139 0.4 0.76 ∗10−2
其他 2.2 8137 89 0.3 0.18 ∗10−2
异径管 1.8 6570 80 0.3 0.36 ∗10−2
Cap 1.2 4336 65 0.2 0.17 ∗10−2
表5所有案例研究中电气对象类型的优先列表。
电气对象 type 出现频率 appearance (平均)(%) 样本 大小(n) 标准 偏差 标准误差 (95% 置信 水平)
导管 90.2 317,572 177 29.8 ∗10 −2
电缆托架 6.1 21,585 142 23.9 ∗10 −2
配电盘 2.1 7397 85 14.3 ∗10 −2
照明灯 1.4 5009 70 11.8 ∗10 −2
杂项 0.07 250 16 2.7 ∗10 −2
报警 0.05 190 14 2.3 ∗10 −2
演讲者 0.03 120 11 1.8 ∗10 −2
其他 0.01 39 6 1.07 ∗10 −2
电源插座 0.003 11 3 0.53 ∗10 −2
表6所有对象类别中出现频率最高的工业对象类型排名。
Rank最常见对象类型 出现频率(平均)(%)
1 电气导管 24.3
2 直管 14.7
3 圆管型钢(CHS)a 6.5
4 弯头 5.4
5 槽钢 5.0
6 实心棒材 4.5
7 工字梁 4.4
8 角钢 4.0
9 法兰 3.3
10 阀门 2.0
a圆管型钢(CHS)=圆管空心截面。
图4.按对象平均数量的出现频率排序的对象类型。
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
217
自动提取步骤完成后,根据建模者的判断对圆柱体进行检查并确认。 对于难以识别对象的情况,使用激光扫描仪拍摄的图片来辅助检查过程。 一个用户友好的“Smart Sheet” 生成了包含每个管道管段的长度、直径、均方根误差(RMSE)和覆盖 率(%)等信息的结果。结果表明,尽管圆柱体被自动提取,但未提供 上下文信息。因此,电气导管、扶手、圆柱形管道支架、容器及其他对 象类型被建模为直管。
评估过程的下一步是编辑管道并手动添加缺失的管道(分类)。使 用“快速连接”工具将管段连接起来,并在管道网络中添加了三通和弯 头。然后,为软件自动提取的每个圆柱手动分配标签,并使用指标来评 估软件的性能。
对管道进行清理并合并连接管段的额外步骤已完成,以完善管道系 统。此步骤由软件自动完成。然后,使用标准目录获取标准化管道尺寸。 我们选择了美国机械工程师协会(ASME)的标准和150磅/平方英 寸的压力等级。在此步骤之后,将管件(如法兰和阀门)应用于标准化 的管道上。用户可以从可用的标准库中选择不同类型的标准管件。一旦 用户手动选择每个对象的边界,系统便会自动进行管件拟合。
管道建模总结为三个基本步骤:(a)圆柱体的自动提取,(b)圆柱体 的语义分类,以及(c)管道的人工提取和编辑。对象提取中的拟合是自 动进行的,因此不是该流程中的独立步骤。每个步骤中每个圆柱体或管 道的平均时间在我们的操作系统中计算,如表9所示。步骤(a)、(b)和 (c)的处理时间计算如下:
图5.(i)已评估的点云数据集和 (ii)其对应的样本图片。(a)、(b)典型工业设施的两个房间,(c)水 设施 石油化工 工厂
总数 点数(百万) 129 105 122 675
自动 检测 圆柱体 551 86 44 358
手动检测 管道 166 79 48 265
表7每个案例研究中点云数据集中的点总数、圆柱体和管道的数量。
典型 设施 房间1 典型 设施 房间2 水 设施 石油化工 工厂
表8每个数据集的圆柱体和管道的平均直径。
典型设施 房间1 典型设施 房间2 水 设施 石化厂
平均直径(米) 圆柱 0.067 0.076 0.315 0.095
Pipe 0.114 0.106 0.617 0.081
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
218
= 时间/圆柱体。点 timefor automatedextractionof cylinders automatically detectedcylinders points in thedataset (8) = time/cylinder timefor semanticclassificationof cylinders automatically detectedcylinders (9) = time/pipe timeformanual extraction&editingofpipes totalnumber ofpipes (10) 其中自动检测到的圆柱体数量和每个案例研究中管道总数如表7所示。 后者为每个数据集中自动检测和人工检测的管道之和。由于每个数据集 处理的点和圆柱体数量不同,因此采用这些归一化方法来比较每个案例 研究的建模时间。
语义分类的平均时间为每圆柱体0.24分钟。人工提取和管道编辑是 最耗时的步骤,因为我们平均需要每管道1.68分钟来手动添加缺失的管 道并编辑现有管道。观察结果显示,对管道进行分类和提取的人工工作 量平均为每圆柱体1.92分钟,这是两个连续步骤(b)和(c)的时间总 和。这几乎是软件自动提取圆柱体所需时间的三倍。
在水处理设施与其他数据集之间,自动提取圆柱体所需时间存在差 异。这种差异的原因在于水处理设施是室外设施,相较于其他数据集需 要最长的处理时间。从技术上讲,室外场景本质上具有更多的遮挡和不 完整性,并表现出点密度的极端差异[43]。这些影响因房间的有限尺寸 和受限形状而得到缓解。典型工业设施的两个房间在我们的操作系统中 同时处理,因此自动提取所需时间相同,如表9所示。该设施第二个房 间的人工建模耗时最长,这是由于管道系统杂乱干扰所致,导致圆柱体 直径的房间均方根误差(RMSE)最大,如表10所示。这种杂乱干扰归 因于管道系统的反射表面。对水处理设施中管道的人工提取与管道编辑 是另一个建模时间异常值。高度遮挡的管道是造成此异常值的主要原因, 因为其平均覆盖率最低(26.5%),相较于其他项目。管道系统的直径 在 该设施规模明显更大,因为大多数管道用于排污用途。这些观察结果表 明,在同一数据集中,人工检测的管道的平均直径(0.617米)大于自动 提取的圆柱体(0.315米)。这意味着该软件难以识别大直径的圆柱体。
每个提取的圆柱体的均方根误差(RMSE)和覆盖率百分比在 EdgeWise提供的“SmartSheet”中进行计算。表10总结了所有案例研 究的平均值。结果表明,典型设施的第一个房间的RMSE最低,意味着 自动提取的圆柱体与其对应的圆柱点拟合良好。所有案例研究中圆柱体 的平均覆盖率约为圆柱体的四分之一(29.20%),这是许多圆柱体未 被自动提取的原因。
该软件的性能根据以下两个指标进行评估:精确率和召回率[44], = + precision TruePositives(TP) TruePositives(TP) FalsePositives(FP) (11) = + recall TruePositives(TP) TruePositives(TP) FalseNegatives(FN) (12) 其中,TP是指被自动检测为管道且被正确检查为管道的对象数量。 假阳性是指被检测为管道但实际上被我们分类为其他圆柱形物体的 对象数量(例如扶手、圆形空心钢构件等)。 假阴性是指那些本应被自动检测为管道但未被检测到的管道对象。 这些管道已通过手动提取并添加到模型中。
从我们的四个样本数据集中获得的性能指标如表11所示。根据精确 率,在所有自动检测到的圆柱体中,所有案例研究中平均仅有47%对应 于管道,其余为其他圆柱形物体。平均召回率为58.1%,意味着在典型 设施中存在的所有管道中,仅有58.1%能够被自动检测到。结果表明, 作为户外设施的水处理设施召回率最低,为33.3%。与其它数据集相比, 该数据集较低的性能指标可归因于更高的噪声。典型设施第一个房间中 管道的低精确率(27.9%)归因于较多的假阳性(屋顶瓦片)被错误地 检测为管道。
对圆柱体也测量了相同的指标。所用指标的唯一区别在于,精确率 定义为所有检测到的圆柱体中自动检测到的圆柱体数量,而召回率是所 有其他自动检测到的非圆柱形基本几何形状中自动检测到的圆柱体数量。 除石化厂(45.7%)外,所有数据集的圆柱体召回率均较高,这归因于 该数据集的扫描完整性较低以及杂乱干扰增加。四个数据集的平均召回 率为75.6%,表明该软件在提取此类基本几何形状方面的优势。圆柱体 的精确率也比管道高出15%,因为该软件设计用于检测圆柱形基本几何 形状。最低的精确率
表9每个数据集的每个建模任务的建模时间及每个对象的平均时间(分钟/对象)。
建模任务 典型设施房间1 典型设施房间2 水处理设施 石化厂 平均时间(分钟) 时间(分钟)
圆柱体的自动提取a 1.5 ∗10−3 1.5 ∗10−3 7.1 ∗10−3 1.4 ∗10−3 3.3 ∗10−3
圆柱体的语义分类b 0.20 0.47 0.17 0.12 0.24 手动提取与编辑管道c 0.69 2.37 2.43 1.22 1.68
a每圆柱体 ∗点。b每 圆柱体。c每管道。
表10每个数据集中自动检测的圆柱体半径和覆盖面积(%)的均方根误差( RMSE)及其平均值。
自动检测 圆柱体在 圆柱体的均方根误差 半径(米) 覆盖面积(%)
典型设施‐房间1 1.7 ∗10−3 32.5
典型设施‐房间2 6.7 ∗10−3 30.2
水处理设施 1.9 ∗10−3 26.5
石化厂 4.2 ∗10−3 27.6
平均值 3.6 ∗10−3 29.2
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
219
在典型工业设施的第二个房间中观察到(22%)的情况,这是由于屋顶 的波纹形状被错误地建模为圆柱体所致。由于相同原因,该设施第一个 房间也表现出相同的趋势(精确率较低,约为48%)。
3.6.结构构件建模
在上述案例研究中,对最常识别出的结构构件(CHSs、槽钢、工 字梁)进行了建模。用户选择I‐Beam、Channel、Round Tubing工具来 手动提取相应的构件。用户还可以为标准列表中不存在的形状创建自定 义标准。“Pattern Extract”工具用于提取相同对象类型的组或可重复元 素。提取的截面随后在“SmartSheet”中进行准确性检查。 本次评估所采用的标准来自AISC手册。我们还使用了“Autofit”工 具来自动查找指定截面的正确尺寸。由于该过程是手动的,因此未使用 精确率和召回率指标。
3.7.最先进的建模软件的整体性能
从石化厂的一个房间获得的代表性三维模型如图6所示。激光扫描 数据由AVEVA集团有限公司提供。初始点云、自动管道提取结果以及 在对最常见管道元件、结构构件和电气导管进行手动建模后得到的3D模 型如图6所示。这些三维模型并非设施的完整3D模型,而是本文用于评 估目的的子集。
目的是图6并非展示该设施的完整3D模型,而是作为对象数量及建 模时间的一个示例。值得注意的是,在EdgeWise中实心棒材并未被单 独建模,因为在激光测量中无法将实心棒材与圆管空心截面区分开来。
3D模型可以导出到Revit,以获得用于不同软件包之间互操作性的 IFC模型。然而,我们发现变径管、阀门、法兰、角钢以及部分槽钢 (根据美国钢结构协会标准‐AISC的C3和C4)无法在Revit中导出。 包含长度为<4 mm直线构件的模型也无法传输到Revit。
最先进的建模软件的性能在表12中进行了总结。该表格表明,由于 已知的几何形状会自动拟合到选定的点簇,因此像EdgeWise这样的商 业软件已经解决了最重要对象类型的拟合问题。
圆柱体的基本形状检测已部分得到解决,因为EdgeWise的结果显 示召回率为75%,精确率为62%。非圆柱形形状需手动提取,且所有对 象类型的分类尚未实现。
管道、导管和圆管型钢(CHS)也在Revit中手动建模,以比较通 过此方法进行形状提取所需的人工时。 手动过程。每个类别中对30个对象进行了建模,并测量了其平均建模时 间。在Revit等软件中进行手动建模的工作流程包括三个步骤:(a)在 CloudCompare等点云可视化软件中对目标对象进行手动分割,(b) 将点导出至AutodeskRecap以获得适当格式,然后(c)在Revit中建 模。本次评估使用了Revit2017。圆柱体的参数(半径和长度)由建模 者根据判断选择。
3.8.结果
对上述对象类型的建模时间在与管道、结构和电气对象类型相同的 操作系统中进行测量。计算最常见对象类型的每对象平均建模时间。圆 柱形物体的手动建模时间被分解为上述研究的两个步骤:形状提取和语 义分类。根据典型设施中特定类型对象的平均数量,我们计算每种对象 类型及每个适用建模步骤的平均建模时间。图7显示了每对象建模时间 (单位:分钟),而图8显示了在典型工业设施中对相同对象类型进行 建模的预估总工时(单位:小时)。
图7显示,在EdgeWise中,直管的人工提取是相对于管道语义分 类而言最耗时的步骤,需要1.68分钟/根直管。通道的人工提取也是一项 费力的任务,相较于其他所有对象类型的人工提取更为耗时,因其形状 的复杂性,需要1.78分钟/个通道。尽管部分圆管型钢(CHS)可被自动 提取,但由于它们通常是管道支撑和扶手,且常被严重遮挡,因此手动 识别较为困难。例如,管架因上方有管道系统通过而被遮挡。这是导致 建模时间较长(0.93分钟/个CHS)的原因。圆柱体的语义分类不是一个 耗时步骤,平均仅需<0.5分钟/个圆柱体。
我们从上述基于频率的案例研究中选择了一个设施,该设施的对象 总数在所调查的五个设施中处于中位数水平。该设施是拥有240,687个 对象的石化厂。图8显示,对于拥有53,834根管道的该设施,管道建模 平均所需时间最长(约5200工时)。需要注意的是,尽管EdgeWise Plant/MEP已实现对圆柱体的自动提取,但管道系统的建模仍需耗费大 量时间。圆柱形是最常见的几何形状,因此建模人员需要投入大量精力 将电气导管、圆管型钢(CHS)、扶手和其他圆柱形物体与直管区分开 来。
尽管电气导管是工业工厂中最常见的对象类型(在典型工厂中占 24.3%,表6),但与直管相比,其建模所需工时更少。这归因于电气 导管的设计使其多个圆柱体紧密排列,使建模人员更容易识别,从而缩 短了建模时间。
法兰和弯头不需要花费大量时间(分别为0.28和0.39分钟/对象), 如图7所示,尽管用户是在管道模型中手动添加它们的。我们观察到, 一旦识别出管道网络,添加管件便是一项快速的任务,不一定需要自动 建模。角钢所需时间最少,为<0.25分钟/角钢,这归因于其与工字梁 或槽钢相比更简单的几何形状。
石化厂中上述类别的240,687个对象的手动建模总工时估计为21人 月。该结果基于以下假设:(a)所有案例研究均由一名经过培训的建 模人员完成,(b)工作时间为每天8小时,每周5天,(c)操作系统如 上所述。使用EdgeWise进行圆柱体提取和分类的相同指标为17人月, 如上文所述。
表11管道和圆柱检测的平均性能指标
数据集 管道检测指标 圆柱检测指标
召回率(%)精确率(%)召回率(%)精确率(%)
典型设施房间 1 80.1 27.9 69.3 48.2
典型设施房间 2 59.5 54.6 100.0 22.0
水处理设施 33.3 36.4 87.3 86.4
石化厂 59.6 69.3 45.7 91.9
平均值 58.1 47.0 75.6 62.1
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
220
由于参数的选择取决于建模者的判断,因此计算了管道、导管和圆管型 钢(CHS)的平均手动建模时间的置信区间。管道的手动建模时间为 5.8 ± 1分钟,置信水平为99%。导管和圆管型钢(CHS)的建模时间 分别为1.3 ± 0.75分钟和3.6 ± 0.4分钟。这意味着这些对象类别的建 模时间没有显著变化。
我们观察到,与Revit等传统手动建模平台相比,使用最先进的软 件EdgeWise进行圆柱体手动建模时,可节省64%的人工时。结果还显 示,管道建模的手动建模时间节省了67%。本案例表明,在 EdgeWise中对圆柱体进行建模时节省了4836个人工工时。这对于这些 设施尤为重要,因为由于连续生产流程的限制,用于维护和翻新决策的 时间非常有限。
图6。(a)输入点云,(b)在EdgeWisePlant/MEP中的自动圆柱体提取,以及(c)石化厂某房间的管道、结构构件和电气导管手动建模后的3D模型。(数据集由 AVEVA集团有限公司提供)
表12最先进的软件包在最重要对象类型的每个建模步骤中的性能。
工业对象 type 基本几何形状 提取 语义标注 (分类) 拟合
直管 部分解决 未解决 已解决
CHS a 部分解决 未解决 已解决
通道 未解决 未解决 已解决
导管 部分解决 未解决 已解决
工字梁 未解决 未解决 已解决
阀门 未解决 未解决 已解决
弯头 未解决 未解决 已解决
法兰 未解决 未解决 已解决
角度 未解决 未解决 已解决
a 圆形空心截面(CHS)。
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
221
4.结论
在三种最常见工业类别(结构构件、管道网络和电气设备)中,十 个最重要的对象类型根据其出现频率和建模时间进行排名。结果表明, 在EdgeWise中,圆柱形物体(直管、电气导管和圆管空心截面)占这 十个最重要对象类型总建模时间的80%,并且平均占工业工厂对象总数 的45.5%。
本文是首个专门针对识别最常见且建模耗时的工业对象类型的研究。 本文的结果表明,当前实践已实现了直管、弯头和导管基本几何形状的 自动提取。然而,在最先进的建模软件包中,并未对每种对象类型执行 语义标注。研究人员已提出基于先验知识的工业对象语义标注方法 然而,这些方法无法区分具有相同基本几何形状的对象类别,例如圆柱 形物体(如扶手、管道、电气导管、圆形空心截面)。
与其它最先进的软件相比,选择了EdgeWise,因为它是目前唯一 一款commerciallyavailable的工具,能够尝试在无需大量用户干预 的情况下,从工业厂房的点云中自动提取圆柱体。PointSensePlant具 有类似的功能(“WalktheRun”),如上所述,但用户需要识别管 道最可能存在的潜在区域。这种半自动化方法通过建议管道的插入点来 引导用户完成整个流程,使用户保持对建模过程的控制。因此,由于 EdgeWise在圆柱体提取方面实现了更高的自动化水平,故更受青睐。
根据上述讨论的结果,它也显著促进了工业厂房的3D建模。然而,它仍 存在一些局限性,可总结如下: (a)建模人员应手动识别结构构件,或在点云中大致定义对象的位置以 进行拟合。(b)圆柱体的检测仅部分解决,因为圆柱体的召回率为75%, 精确率为62%。管道的相应指标分别为58%和47%。(c)EdgeWise未 使用语义标签和拓扑关系对3D几何图元进行信息补充。工程师需要手动 为3D模型的构件添加语义标签。(d)不同软件平台之间的数据不一致性 阻碍了建模人员在不同AI‐BIM平台之间交换数据。EdgeWise并未设 计为以开放通用架构提供最终输出。
因此,本文提出的贡献是:(1)发现工业设施中最常见的对象类型 及其各自的建模时间;(2)对最先进的软件(特别是EdgeWise)的性 能进行测量。后者揭示了该软件在检测圆柱体方面性能不佳,且无法 (i)进一步将圆柱体分类为导管、管道或圆管型钢(CHS),以及(ii) 检测并进一步分类I型梁、槽钢、弯头、法兰、阀门和角钢,尽管这些对 象类型在工业设施中出现频率较高。
基于建模时间评估了对对象类型优先列表进行建模的直接影响。 EdgeWise的评估结果表明,半自动建模圆柱体将使建模所需人工时减 少64%。这对于工业设施管理人员具有直接影响,因为在非预期情况下 (关键对象故障、翻新操作和工厂扩建),每一小时的现状建模时间都 对工厂运行至关重要。
优先选择对象类型带来的间接影响是建模成本的降低,因为建模人 员的人工时将减少。尽管无法准确计算工业检查与维护中严重性被高估 所带来的具体成本,但可以合理预测,一旦人工智能‐建筑信息模型易于 开发且其成本不会抵消其创建带来的效益,工业厂房的维护将得到显著 改善。这些资产维护不善不仅会影响资产所在区域,还会波及周边地区, 对附近公众的生命安全构成严重威胁。
本研究尚有改进空间,且本研究的一些局限性可为未来的研究指明 方向。本研究聚焦于需要重点建模的工业对象,但并未探讨如何对这些 对象进行自动建模的方法。未来的工作将针对最重要的对象类型,实施 自动化分类算法(例如机器学习),以最小化建模时间。将这些算法应 用于数百个具有高度相似性的不同对象类别(例如管道、电气导管、 CHs)是一个非常困难的多分类问题,这将
图7。最重要对象类型的每个对象的平均建模工时(分钟/对象)。
图8.样本设施中最重要对象的每种对象类型的平均建模工时,图中显示了对象数 量。
E.Agapaki等人 《建筑自动化》96期(2018年)211–223页
222
这些复杂环境中需要建模的重要对象将极大地受益于本探索性研究的结 果。总体而言,可以建立一个针对工业设施运营至关重要的、在工业环 境中频繁出现且建模耗时的对象类别的训练库,以支持旨在自动检测这 些类别的进一步研究。本文研究成果的应用将指导研究人员探索对这些 对象进行自动建模的方法。
881

被折叠的 条评论
为什么被折叠?



