SVD和PCA

简介

本文主要介绍SVD和PCA相关知识和使用Matlab分析。
SVD即奇异值分解(Singular Value Decomposition). 先作几个定义:
1、奇异值(Singular Value)方阵A的奇异值是矩阵 特征值的平方根(跟特征值个数一样多)。
2、条件数(Condition Number):条件数是最大奇异值和最小奇异值之比。
3、奇异矩阵(Singular Matrix):条件数无穷大的矩阵,其行列式(determinant)为0。

方阵特征分解

矩阵的特征分解(Eigen decomposition),又称谱分解(Spectral decomposition)。任何一个实对称m*m的矩阵A可以分解为如下的形式:
  (1)
其中U是一个正交矩阵( ),它的每一列是A的特征向量。 是一个对角矩阵,其对角线元素是A的特征值(其排列与特征向量对应)。根据(1)式我们可以得到:
 (2)
即我们熟悉的特征向量与特征值关系。

奇异值分解

任何一个实n*m (n>=m)矩阵B有如下的分解形式:
 (3)
其中U是一个n*m的矩阵且各列正交( ),V是一个m*m的正交矩阵( ), 是一个m*m包含奇异值的对角阵。
通过B我们定义两个对称阵 ,可以分解如下:
 (4)
 (5)
那么 有m个特征值相同,而 剩余n-m个特征值为0。
从上面的分解可以知道 的特征向量和特征值分别为V的列和 的对角元素的平方,假设为v和 ,那么:
(6)
易知Bv和 分别是 的特征向量和特征值:
 (7)

主成分分析PCA

样本 (i=i, 2, ..., n)的均值为 ,那么其协方差矩阵为:
 (8)
若每个样本去掉各维数的均值: ,那么协方差矩阵可以写成如下形式:
 (9)
PCA就是寻在协方差矩阵最大特征值对应的特征向量,并把数据投影到这些方向上。假设特征向量为U,那么PCA对数据进行如(8)所示的线性变换:
 (10)
特征向量被成为主成分,如果我们选取Y的m行,那么可以将数据从d维降到m维。

用SVD进行PCA

将X进行奇异值分解可得 ,那么协方差矩阵如下所示:

根据方阵特征分解可知,U即为协方差矩阵的特征向量。
若样本维数d远大于样本个数n
从(6)和(7)可知我们可以分解较小的矩阵:

最终可以得到主成分:  ([U S V] = svd(X))






  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值