在本教程中,我介绍了如何找到免费的航拍图像,将其从GeoTIFF转换为JPG,将其分割为子图像,然后将子图像分类为训练集和测试集。我还根据预训练模型使用训练集对YOLO模型进行了微调,最后将其部署在整个图像集上。学习这种技术有助于读者将其应用于实际应用,如库存管理、交通流量分析或停车需求评估。
引言
大约一个月前,我在一家知名报纸上读到一篇文章,该文章使用超高分辨率图像(分辨率小于20厘米)分析了每个库存中的特斯拉汽车数量。文章旨在估计特斯拉在第二季度交付的车辆数量。读完之后,我认为这可以是目标检测算法的一个很好的应用,用于检测和计算航拍图像中的汽车,评估汽车公司的库存状态,假设新车停在露天停车场。
受此启发,我决定准备一个教程,展示如何使用标记的数据集训练目标检测算法,并将其从头到尾应用于航拍图像。在本教程中,您将学习如何找到免费的航拍图像,在不损失分辨率的情况下将GeoTIFF文件转换为JPG文件,标记数据集,训练模型,并将其应用于整个图像。如果您想在一篇Medium文章中学习所有这些步骤,那么这