题目描述
Given a m x n matrix mat and an integer threshold. Return the maximum side-length of a square with a sum less than or equal to threshold or return 0 if there is no such square.
Example 1:
Input: mat = [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], threshold = 4
Output: 2
Explanation: The maximum side length of square with sum less than 4 is 2 as shown.
Example 2:
Input: mat = [[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2]], threshold = 1
Output: 0
Example 3:
Input: mat = [[1,1,1,1],[1,0,0,0],[1,0,0,0],[1,0,0,0]], threshold = 6
Output: 3
Example 4:
Input: mat = [[18,70],[61,1],[25,85],[14,40],[11,96],[97,96],[63,45]], threshold = 40184
Output: 2
Constraints:
1 <= m, n <= 300
m == mat.length
n == mat[i].length
0 <= mat[i][j] <= 10000
0 <= threshold <= 10^5
思路
先用动态规划求出从(0,0)点到任意位置组成的矩形的面积。那么就可以在 O(1)的时间求出任意矩形的面积。最后遍历起始位置和边长,求出符合条件的最大边长。因为随着边长扩张,sum一定是增大的,可以用二分来求。时间复杂度 O ( mnlog(min(m, n)))。
代码
class Solution {
public:
int maxSideLength(vector<vector<int>>& mat, int threshold) {
int m = mat.size();
int n = mat[0].size();
vector<vector<int> > dp(m+1, vector<int>(n+1, 0));
for (int i=1; i<=m; ++i){
for (int j=1; j<=n; ++j) {
dp[i][j] = dp[i][j-1] + dp[i-1][j] - dp[i-1][j-1] + mat[i-1][j-1];
}
}
auto getSum = [&](int x1, int y1, int x2, int y2) {
return dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1];
};
int ans = 0;
for (int i=1; i<=m; ++i) {
for (int j=1; j<=n; ++j) {
int l = 0;
int r = min(m-i, n-j) + 1;
while(l < r) {
int mid = l + (r - l) / 2;
if (getSum(i, j, i+mid, j+mid) > threshold) {
r = mid;
}else l = mid + 1;
}
ans = max(ans, l);
}
}
return ans;
}
};
突然发现,每次对二分的边界条件都是试出来的。。。。
闭区间的二分:
class Solution {
public:
int maxSideLength(vector<vector<int>>& mat, int threshold) {
int m = mat.size();
int n = mat[0].size();
vector<vector<int> > dp(m+1, vector<int>(n+1, 0));
for (int i=1; i<=m; ++i){
for (int j=1; j<=n; ++j) {
dp[i][j] = dp[i][j-1] + dp[i-1][j] - dp[i-1][j-1] + mat[i-1][j-1];
}
}
auto getSum = [&](int x1, int y1, int x2, int y2) {
return dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1];
};
int ans = 0;
for (int i=1; i<=m; ++i) {
for (int j=1; j<=n; ++j) {
int l = 0;
int r = min(m-i, n-j);
while(l <= r) {
int mid = l + (r - l) / 2;
if (getSum(i, j, i+mid, j+mid) > threshold) {
r = mid - 1;
}else l = mid + 1;
}
ans = max(ans, l-1+1);
}
}
return ans;
}
};