题目地址:
给定一个 m × n m\times n m×n的二维矩阵 A A A,再给定一个非负整数 t t t,问总和小于等于 t t t的子方阵中边长最大是多少。如果不存在则返回 0 0 0。
先求 A A A的前缀和数组,这样方便迅速求得子方阵的和。直接枚举子方阵的右下角的点即可,如果发现了某个边长 r r r的子方阵的和小于等于 t t t,那么我们就知道了答案一定大于等于 r r r,从而我们枚举子方阵边长的时候可以单调的枚举,因为我们不必枚举更小的答案。代码如下:
class Solution {
public:
int maxSideLength(vector<vector<int>>& g, int threshold) {
int m = g.size(), n = g[0].size();
int s[m + 1][n + 1];
memset(s, 0, sizeof s);
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
s[i][j] = g[i - 1][j - 1] + s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
auto f = [&](int x1, int y1, int x2, int y2) {
return s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1];
};
int res = 0;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
for (int k = res + 1; k <= min(i, j); k++) {
if (f(i - k + 1, j - k + 1, i, j) > threshold) break;
res++;
}
return res;
}
};
时空复杂度 O ( m n ) O(mn) O(mn)。