在开始学习之前推荐大家可以多在 FlyAI竞赛服务平台 多参加训练和竞赛,以此来提升自己的能力。FlyAI是为AI开发者提供数据竞赛并支持GPU离线训练的一站式服务平台。每周免费提供项目开源算法样例,支持算法能力变现以及快速的迭代算法模型。
目录
计算图纸
Tensor 张量意义
自动求导机制
基础示例:线性回归
NumPy 下的线性回归
TensorFlow 下的线性回归
计算图纸
Tensorflow 首先要定义神经网络的结构, 然后再把数据放入结构当中去运算和 training.
因为TensorFlow是采用 数据流图(data flow graphs) 来计算, 所以首先我们得创建一个数据流图, 然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor). 训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点, 这就是TensorFlow名字的由来.
Tensor 张量意义
张量(Tensor): 张量有多种.
零阶张量为 纯量或标量 (scalar) 也就是一个数值. 比如 [1]
random_float = tf.random.uniform(shape=()) 定义一个随机数
一阶张量为 向量 (vector), 比如 一维的 [1, 2]
zero_vector = tf.zeros(shape=(2)) 定义一个有2个元素的零向量
二阶张量为 矩阵 (matrix), 比如 二维的 [[1, 2],[3, 4]]
A = tf.constant([[1., 2.], [3., 4.]]) 定义一个2×2的常量矩阵
以此类推, 还有 三阶 三维的 …
张量的重要属性是其形状、类型和值。可以通过张量的 shape 、 dtype 属性和 numpy() 方法获得。例如:
# 查看矩阵A的形状、类型和值
print(A.shape) # 输出(2, 2),即矩阵的长和宽均为2
print(A.dtype) # 输出
print(A.numpy()) # 输出[[1. 2.]
# [3. 4.]]
TensorFlow 的大多数 API 函数会根据输入的值自动推断张量中元素的类型(一般默认为 tf.float32)。不过你也可以通过加入 dtype 参数来自行指定类型,例如 zero_vector = tf.zeros(shape=(2), dtype=tf.int32) 将使得张量中的元素类型均为整数。
张量的 numpy() 方法是将张量的值转换为一个 NumPy 数组。
自动求导机制
在机器学习中,我们经常需要计算函数的导数。TensorFlow 提供了强大的 自动求导机制 来计算导数。在即时执行模式下,TensorFlow 引入了 tf.GradientTape() 这个 “求导记录器” 来实现自动求导。
在机器学习中,更加常见的是对多元函数求偏导数,以及对向量或矩阵的求导。这些对于 TensorFlow 也不在话下。以下代码展示了如何使用 tf.GradientTape() 计算函数
L(w, b) = \|Xw + b - y\|^2
L(w,b)=∥Xw+b−y∥2
X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 2\end{bmatrix}
X=[1324],y=[12]。
import tensorflow as tf
X = tf.constant([[1., 2.], [3., 4.]])
y = tf.constant([[1.], [2.]])
w = tf.Variable(initial_value=[[1.], [2.]])
b = tf.Variable(initial_value=1.)
with tf.GradientTape() as tape:
L = tf.reduce_sum(tf.square(tf.matmul(X, w) + b - y))
w_grad, b_grad = tape.gradient(L, [w, b]) # 计算L(w, b)关于w, b的偏导数
print(L, w_grad, b_grad)
输出:
tf.Tensor(125.0, shape=(), dtype=float32)
tf.Tensor(
[[ 70.]
[100.]], shape=(2, 1), dtype=float32)
tf.Tensor(30.0, shape=(), dtype=float32)
tf.square() 操作代表对输入张量的每一个元素求平方,不改变张量形状。
tf.reduce_sum() 操作代表对输入张量的所有元素求和,输出一个形状为空的纯量张量(可以通过 axis 参数来指定求和的维度,不指定则默认对所有元素求和)。
从输出可见,TensorFlow 帮助我们计算出了
L((1, 2)^T, 1) = 125
L((1,2)T,1)=125
\frac{\partial L(w, b)}{\partial w} |_{w = (1, 2)^T, b = 1} = \begin{bmatrix} 70 \\ 100\end{bmatrix}
∂w∂L(w,b)∣w=(1,2)T,b=1=[70100]
\frac{\partial L(w, b)}{\partial b} |_{w = (1, 2)^T, b = 1} = 30
∂b∂L(w,b)∣w=(1,2)T,b=1=30
基础示例:线性回归
考虑一个实际问题,某城市在 2013 年 - 2017 年的房价如下表所示:
现在,我们希望通过对该数据进行线性回归,即使用线性模型
y = ax + b大连人流医院 http://mobile.bhbyby.net/
y=ax+b 来拟合上述数据,此处 a和 b 是待求的参数。
首先,我们定义数据,进行基本的归一化操作。
import numpy as np
X_raw = np.array([2013, 2014, 2015, 2016, 2017], dtype=np.float32)
y_raw = np.array([12000, 14000, 15000, 16500, 17500], dtype=np.float32)
X = (X_raw - X_raw.min()) / (X_raw.max() - X_raw.min())
y = (y_raw - y_raw.min()) / (y_raw.max() - y_raw.min())
接下来,我们使用梯度下降方法来求线性模型中两个参数 a 和 b 的值。
回顾机器学习的基础知识,对于多元函数
f(x) 求局部极小值,梯度下降 的过程如下:
初始化自变量为
x_0 , k=0
x0,k=0迭代进行下列步骤直到满足收敛条件:
求函数f(x)
f(x) 关于自变量的梯度
\nabla f(x_k)
∇f(xk)更新自变量
x_{k+1} = x_{k} - \gamma \nabla f(x_k)
xk+1=xk−γ∇f(xk) 。这里
γ\gamma
γ 是学习率(也就是梯度下降一次迈出的 “步子” 大小)
k \leftarrow k+1
k←k+1
接下来,我们考虑如何使用程序来实现梯度下降方法,求得线性回归的解
\min_{a, b} L(a, b) = \sum_{i=1}^n(ax_i + b - y_i)^2
mina,bL(a,b)=∑i=1n(axi+b−yi)2 。
NumPy 下的线性回归
在以下代码中,我们手工求损失函数关于参数 a 和 b 的偏导数,并使用梯度下降法反复迭代,最终获得 a 和 b 的值。
a, b = 0, 0
num_epoch = 10000
learning_rate = 5e-4
for e in range(num_epoch):
# 手动计算损失函数关于自变量(模型参数)的梯度
y_pred = a * X + b
grad_a, grad_b = 2 * (y_pred - y).dot(X), 2 * (y_pred - y).sum()
# 更新参数
a, b = a - learning_rate * grad_a, b - learning_rate * grad_b
print(a, b)
TensorFlow 下的线性回归
TensorFlow 的 即时执行模式 与上述 NumPy 的运行方式十分类似,然而提供了更快速的运算(GPU 支持)、自动求导、优化器等一系列对深度学习非常重要的功能。以下展示了如何使用 TensorFlow 计算线性回归。可以注意到,程序的结构和前述 NumPy 的实现非常类似。这里,TensorFlow 帮助我们做了两件重要的工作:
使用 tape.gradient(ys, xs) 自动计算梯度;
使用 optimizer.apply_gradients(grads_and_vars) 自动更新模型参数。
X = tf.constant(X)
y = tf.constant(y)
a = tf.Variable(initial_value=0.)
b = tf.Variable(initial_value=0.)
variables = [a, b]
num_epoch = 10000
optimizer = tf.keras.optimizers.SGD(learning_rate=5e-4)
for e in range(num_epoch):
# 使用tf.GradientTape()记录损失函数的梯度信息
with tf.GradientTape() as tape:
y_pred = a * X + b
loss = tf.reduce_sum(tf.square(y_pred - y))
# TensorFlow自动计算损失函数关于自变量(模型参数)的梯度
grads = tape.gradient(loss, variables)
# TensorFlow自动根据梯度更新参数
optimizer.apply_gradients(grads_and_vars=zip(grads, variables))
在这里,我们使用了前文的方式计算了损失函数关于参数的偏导数。
同时,使用 tf.keras.optimizers.SGD(learning_rate=5e-4) 声明了一个梯度下降 优化器 (Optimizer),其学习率为 5e-4。优化器可以帮助我们根据计算出的求导结果更新模型参数,从而最小化某个特定的损失函数,具体使用方式是调用其 apply_gradients() 方法。
注意到这里,更新模型参数的方法 optimizer.apply_gradients() 需要提供参数 grads_and_vars,即待更新的变量(如上述代码中的 variables )及损失函数关于这些变量的偏导数(如上述代码中的 grads )。
具体而言,这里需要传入一个 Python 列表(List),列表中的每个元素是一个(变量的偏导数,变量) 对。比如上例中需要传入的参数是 [(grad_a, a), (grad_b, b)] 。我们通过 grads = tape.gradient(loss, variables) 求出 tape 中记录的 loss 关于 variables = [a, b] 中每个变量的偏导数,也就是 grads = [grad_a, grad_b],再使用 Python 的 zip() 函数将 grads = [grad_a, grad_b] 和 variables = [a, b] 拼装在一起,就可以组合出所需的参数了。
在实际应用中,我们编写的模型往往比这里一行就能写完的线性模型 y_pred = a * X + b (模型参数为 variables = [a, b] )要复杂得多。所以,我们往往会编写并实例化一个模型类 model = Model() ,然后使用 y_pred = model(X) 调用模型,使用 model.variables 获取模型参数。
更多精彩内容请访问FlyAI-AI竞赛服务平台;为AI开发者提供数据竞赛并支持GPU离线训练的一站式服务平台;每周免费提供项目开源算法样例,支持算法能力变现以及快速的迭代算法模型。
挑战者,都在FlyAI!!!