Inductive Representation Learning On Large Graphs【阅读笔记】

GraphSAGE是一种归纳式网络嵌入方法,适用于动态图中新增节点的快速表示学习,无需重新训练。它通过邻居采样、特征聚集和不同类型的聚合策略(如Mean、GCN、LSTM、MaxPooling)来实现。文章详细介绍了模型结构、训练过程,并提供了开源代码链接。
摘要由CSDN通过智能技术生成

前言

Network Embedding 旨在为图中的每个顶点学习得到特征表示。近年的Deepwalk,LINE, node2vec, SDNE, DNGR等模型能够高效地、直推式(transductive)地得到节点的embedding。然而,这些方法无法有效适应动态图中新增节点的特性, 往往需要从头训练或至少局部重训练。斯坦福Jure教授组提出一种适用于大规模网络的归纳式(inductive)学习方法-GraphSAGE,能够为新增节点快速生成embedding,而无需额外训练过程。

大部分直推式表示学习的主要问题有:

  • 缺乏权值共享(Deepwalk, LINE, node2vec)。节点的embedding直接是一个N*d的矩阵, 互相之间没有共享学习参数。
  • 输入维度固定为|V|。无论是基于skip-gram的浅层模型还是基于autoencoder的深层模型,输入的维度都是点集的大小。训练过程依赖点集信息的固定网络结构限制了模型泛化到动态图的能力,无法为新加入节点生成embedding。

模型

本文提出了一种基于邻居特征聚集的方法,由以下三部分组成:

  • 邻居采样。因为每个节点的度是不一致的,为了计算高效, 为每个节点采样固定数量的邻居。
  • 邻居特征聚集。通过聚集采样到的邻居特征,更新当前节点的特征。网络第k层聚集到的 邻居即为BFS过程第k层的邻居。
  • 训练。既可以用获得的embedding预测节点的上下文信息(context),也可以利用embedding做有监督训练。
    GraphSAGE
    在实践中,每个节点的receptive field设置为固定大小,且使用了均匀采样方法简化邻居选择过程。作者设计了四种不同的聚集策略,分别是Mean、GCN、LSTM、MaxPooling。

  • Mean Aggregator: 对所有对邻居节点特征取均值。

  • GCN Aggregator: 图卷积聚集W(PX),W为参数矩阵,P为邻接矩阵的对称归一化矩阵,X为节点特征矩阵。
  • LSTM Aggregator: 把所有节点按随机排列输入LSTM,取最终隐状态为聚集之后对表示。
  • Pooling Aggregator: 邻接特征经过线性变换化取各个位置上对最大值。

模型最终的损失函数为edge-wise loss࿰

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值