【论文笔记】Representation Learning on Graphs: Methods and Applications

Hamilton W L, Ying R, Leskovec J. Representation learning on graphs: Methods and applications[J]. arXiv preprint arXiv:1709.05584, 2017.

该论文是斯坦福大学的Jure组的博士生出的关于图表示学习的综述,系统的介绍了图表示学习领域目前的发展现状。

目标

图表示学习
目标 将网络信息转化为低维稠密的实数向量,并用于已有的机器学习算法的输入;用低维连续特征表示原有的高维离散特征
为什么需要 (1)数据高度稀疏(one-hot 编码/ 邻接矩阵)并且 N × N N \times N N×N 高维度
(2)节点之间的相似性难以度量
应用场景 节点分类、链接预测、社区发现、推荐系统
传统方法 采用人工选取的图的总结特征,如节点度数。缺点:人工选取的特征普适性差,并且耗时
表示的含义 (1)节点的全局位置(相邻节点具有相似的表示)
(2)节点的角色

基于高阶关系的表示学习:把网络顶点关系的相似性从一阶扩展到高阶。对各阶关系采用不一样的目标函数,然后将各阶关系获取的分布式表示进行拼接,进而获得顶点表示。

Node embedding(most common)

Edge embedding

  • Relations in knowledge graph
  • Link prediction

Sub-graph embedding

  • Substructure embedding
  • Community embedding

Whole-graph embedding

2 节点嵌入 Embedding Nodes

embedding global position 细分类型 代表工作
Shallow embedding Laplacian eigenmaps: GF 、HOPE
Random walk based DeepWalk、node2vec,LINE
Deep Learning based auto-encoder SDNE、DNGR
GCN / neighborhood aggregation GCN,GraphSAGE
embedding structural roles 细分类型 代表工作
随机游走 struc2vec,RolX
谱图理论 GraphWave

Transductive learning vs Inductive learning

Transductive learning: unlabelled data is the testing data

Inductive learning: unlabelled data is not the testing data

在训练过程中,已知testing data(unlabelled data)是transductive learing

在训练过程中,并不知道testing data ,训练好模型后去解决未知的testing data 是inductive learing

简单来说,transductive和inductive的区别在于我们想要预测的样本,是不是我们在训练的时候已经见(用)过的。

2.1 编码-解码视角 encoder-decoder perspective

2.2 浅层模型 Shallow embedding approaches

大多数embedding方法属于shallow embedding方法即浅层模型 (e.g. node2vec, DeepWalk, Laplcacian Eigenmaps),将节点映射到embedding向量的计算过程类似于查找
E N C ( v i ) = Z v i {\rm ENC}(\mathbf{v}_i)=\mathbf{Zv}_i ENC(vi)=Zvi
v i ∈ R ∣ V ∣ × 1 \mathbf{v}_i \in \R^{|V|\times 1} viRV×1 是一个one-hot向量,表示 Z Z Z中节点 v i v_i vi 对应的列, Z ∈ R d × ∣ V ∣ \mathbf{Z} \in \R^{d \times|V|} ZRd×V 是一个包含所有节点embedding向量的矩阵。shallow embedding方法直接训练矩阵 Z Z Z 。其decoder是计算节点pair-wise相似性。

Encoder-Decoder框架下现有的shallow embedding方法的缺点

  1. 向量化后的节点之间没有参数共享,完全是一种记忆化的模型存储和查询方式(Look-up),这对存储和计算都构成了不小的挑战。由于节点之间没有参数共享,也就大大损失了泛化能力。
  2. 目前大部分向量化方法,仅利用网络结构信息,并没有利用网络节点本身的属性(比如文本、图像和统计特征),使得结果向量对网络信息的存储很有限。
  3. 大部分模型是对静态网络结构的直推学习,并没有考虑网络时间演化过程中新节点的生成和旧节点的湮灭,不能直接生成训练中未存在节点的embedding。而网络的动态特性对理解其性质也至关重要。这个弱点甚至会影响向量化在动态网络上的效果。

2.2.1 基于矩阵分解 Factorization based

矩阵分解是传统的节点向量化方法,其思想就是对网络的邻接矩阵进行降维,给每个节点生成一个低维表示。

相似性度量:deterministic node similarity measure 确定性

Laplacian Eigenmaps

D E C ( z i , z j ) = ∣ ∣ z i − z j ∣ ∣ 2 2 {\rm DEC} (\mathbf{z}_i, \mathbf{z}_j) = || \mathbf{z}_i - \mathbf{z}_j||_{2}^{2} DEC(zi,zj

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值