​让数据和计算更紧密地结合在一起

本文探讨了如何通过将数据和计算更紧密地结合来优化系统性能,重点关注了近内存计算(如TCM和UPMEM方法)以及计算存储的发展,尤其是固态硬盘的扩展计算能力。文章强调了不同内存技术的优势与挑战,以及编程这些新型存储系统时的复杂性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

"让数据和计算更紧密地结合在一起"并不像听起来那么简单,但功耗/性能和延迟方面的好处可能是巨大的。

处理器的速度已经提高到不再是许多系统的性能瓶颈的程度,现在的瓶颈往往是数据访问。

移动数据既费时(latency)费力(power),开发人员正在寻找减少数据移动距离的方法,这意味着使数据和内存更接近彼此。

许多计算密集型应用(如机器学习 (ML))的处理任务相对较简单,但对于数据的需求很频繁。

此时,数据移动成为应用的瓶颈。计算更小、更简单,因此将数据靠近计算是有意义的。解决此问题的几种方法涉及 SRAM、DRAM 和存储( storage),它们彼此之间有很大不同。

“内存memory”和“存储storage”之间的区别可能会令人困惑,对于从业相关技术的工程师而言,“内存”是仅指易于访问的工作内存 — DRAM 和 SRAM。

我们需要区分另外两个相似的术语:“near-memory computing” 和 “in-memory computing”。后者通常是指使用模拟方法在 memory中实现乘法累加 (MAC) 功能的手段。这不是本次讨论的主题,本次讨论的主题是将是使计算能力和数据更紧密地结合在一起。

有两种方法可以使这些资源更接近 - 将数据移近处理器将处理移近数据。这些架构在high level上是相似的。因此,如果是数据靠近处理器,则拥有具有本地内存的处理器。如果是处理器在移动,那么就是可以存储大量数据,并且附近具有适度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值