2021.03.19面试

AI:
1、PCA的原理
PCA(principal component analysis)主成分分析方法:数据降维算法。
将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。
主要步骤:
①输入样本矩阵
②计算样本每一维的均值,计算观察值与均值之间的偏差,计算协方差矩阵
③计算协方差矩阵其中的特征值和特征向量矩阵
④计算总能量,选取贡献量最大的特征值
⑤计算前p个特征值所对应的特征向量组成的矩阵,计算降维后的样本矩阵。

2、图像处理常见的插值方法:
①最邻近元法:在待求象素的四邻象素中,将距离待求象素最近的邻象素灰度赋给待求象素(造成图像灰度上的不连续)
②双线性插值法:利用待求象素四个邻象素的灰度在两个方向上作线性内插(计算量大,有低通滤波性质,图像边缘轮廓有较轻模糊)
③三次内插法:待求像素(x, y)的灰度值由其周围16个灰度值加权内插得到(计算量大)

3、BN能不能解决过拟合?为什么
Batch Normalization(以下称BN)的主要作用是加快网络的训练速度。
使用BN,就是要保证曲线分布尽量均匀平滑均匀(数据的各个维度上尺度一致从而避免出现某些维度数据过于集中),这可以带来缓解梯度消失和过拟合。

4、如何解决数据集的正负样本不平衡?
①扩大数据集
②重新选择评价指标
③重采样数据集
④尝试不同的分类算法
⑤对模型进行惩罚
⑥通过抽样采样数据集

5、YOLO系列的损失函数
在这里插入图片描述

6、Faster R-CNN 训练和测试的流程有什么不一样?
这些物体检测模型,在训练时会计算分类loss和位置loss,然后计算梯度并反向传播。
在推理和训练不同的操作:比如训练过程中需要选取负样本,但推理过程中不需要。训练和推理的NMS设置不同?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值