[NOIP2004 普及组] FBI 树
题目描述
我们可以把由 0 和 1 组成的字符串分为三类:全 0 串称为 B 串,全 1 串称为 I 串,既含 0 又含 1 的串则称为 F 串。
FBI 树是一种二叉树,它的结点类型也包括 F 结点,B 结点和 I 结点三种。由一个长度为 2 N 2^N 2N 的 01 串 S S S 可以构造出一棵 FBI 树 T T T,递归的构造方法如下:
- T T T 的根结点为 R R R,其类型与串 S S S 的类型相同;
- 若串 S S S 的长度大于 1 1 1,将串 S S S 从中间分开,分为等长的左右子串 S 1 S_1 S1 和 S 2 S_2 S2;由左子串 S 1 S_1 S1 构造 R R R 的左子树 T 1 T_1 T1,由右子串 S 2 S_2 S2 构造 R R R 的右子树 T 2 T_2 T2。
现在给定一个长度为 2 N 2^N 2N 的 01 串,请用上述构造方法构造出一棵 FBI 树,并输出它的后序遍历序列。
输入格式
第一行是一个整数 N ( 0 ≤ N ≤ 10 ) N(0 \le N \le 10) N(0≤N≤10),
第二行是一个长度为 2 N 2^N 2N 的 01 串。
输出格式
一个字符串,即 FBI 树的后序遍历序列。
样例 #1
样例输入 #1
3
10001011
样例输出 #1
IBFBBBFIBFIIIFF
提示
对于 40 % 40\% 40% 的数据, N ≤ 2 N \le 2 N≤2;
对于全部的数据, N ≤ 10 N \le 10 N≤10。
noip2004普及组第3题
方法一
#include <iostream>
#include <string>
using namespace std;
char FBI(string s);
char FBI(string s)
{
if (s.length() > 1)
{
cout << FBI(s.substr(0, s.length() / 2));
cout << FBI(s.substr(s.length() / 2));
}
//巧妙的判断字符串是否全为0或1的方法
if (s == string(s.length(), '0')) return 'B';
if (s == string(s.length(), '1')) return 'I';
return 'F';
}
int main()
{
int n;
cin >> n;
string s;
cin >> s;
cout << FBI(s);
return 0;
}
方法二
#include <iostream>
#include <string>
using namespace std;
int n;
string s;
int dfs(int l, int r)
{
//返回0说明这个节点的字符串全为0,返回1说明这个节点的字符串全为1,而不是1的个数
if (l == r)
{
cout << ((s[l] == '0') ? 'B' : 'I');
return s[l] == '1';
}
int mid = l + r >> 1;
int x = dfs(l, mid);
int y = dfs(mid + 1, r);
if (x + y == 0)//左右字串全为0
{
cout << 'B';
return 0;
}
if (x + y == 2)//左右字串全为1
{
cout << 'I';
return 1;
}
cout << 'F';//其余情况
return 3;
}
int main()
{
cin >> n >> s;
dfs(0, s.size() - 1);
return 0;
}