Problem Description
我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,即含有“0”又含有“1”的串则称为F串。
FBI树是一种二叉树,它的结点类型也包括F结点、B结点和I结点三种。由一个长度为2^N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
T的根结点为R,其类型与串S的类型相同;
若串S的长度大于1,将串S从中间分开,分成等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S1构造R的右子树T2。
现在给定一个长度为2^N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历序列。
Input
输入有多组数据,每组数据的第一行是一个整数N(0<=N<=10),第二行是一个长度为2^N的“01”串。
Output
对于每组数据输出仅一行为FBI树的后序遍历序列。
Sample Input
3
10001011
Sample Output
IBFBBBFIBFIIIFF
题目分析:
1. 理解题意,对FBI树进行判定。只要全是1->I串,只要全是0->B串,0和1都有就是F串;
2. 需要建树。二分的方法进行建树。
3. 理解FBITree(x,(x+y)/2)和FBITree((x+y+1)/2,y);类似于归并排序的建树方法;
4. 这种方法是对每一个元素进行分析建立
#include <iostream>
using namespace std;
char s[1005];
void FBITree(int x,int y)
{
if(y>x){
FBITree(x,(x+y)/2);
FBITree((x+y+1)/2,y);
}
int B = 1,I = 1;
for(int i = 0 ;i <= y - x;i++){
if(s[x+i]=='1'){
B = 0;
}
else if(s[x+i]=='0'){
I = 0;
}
}
if(B){
cout << 'B';
}
else if(I){
cout << 'I';
}
else{
cout << 'F';
}
}
int main()
{
int n;
cin >> n >> s;
FBITree(0,(1<<n)-1);
return 0;
}
以上代码采用一定的优化。先把B和I的值全部赋值为1,要是其中一个为1则不可能是B,要是其中一个为0则不可能是I。