FBI树

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld
题目描述
我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。

FBI树是一种二叉树[1],它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:

  1. T的根结点为R,其类型与串S的类型相同;

  2. 若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。

现在给定一个长度为2N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历[2]序列。
[1] 二叉树:二叉树是结点的有限集合,这个集合或为空集,或由一个根结点和两棵不相交的二叉树组成。这两棵不相交的二叉树分别称为这个根结点的左子树和右子树。

[2] 后序遍历:后序遍历是深度优先遍历二叉树的一种方法,它的递归定义是:先后序遍历左子树,再后序遍历右子树,最后访问根。

输入描述:
第一行是一个整数N(0 <= N <= 10)
第二行是一个长度为2N的“01”串。
输出描述:
一个字符串,即FBI树的后序遍历序列。

输入
3
10001011

输出

IBFBBBFIBFIIIFF

思路:核心:分治
按照左右根顺序,左右子树递归一下就好,主要处理根,不难发现只要统计区间内01的数量就可以推得根。

#include <iostream>
#include <vector>
#include <bits/stdc++.h>
#define minn -10000
using namespace std;

typedef long long ll;

int n;
string s;
ll cnt1=0,cnt2=0;//1 统计1数量    2 统计0数量

void deal(int l,int r)
{
    if(l==r)
    {
        if((s[l]-'0')&1)  cout<<"I";
        else cout<<"B";
        return ;
    }
    else//左右子树
    {
        int mid=(l+r)>>1;
        deal(l,mid);
        deal(mid+1,r);
    }
    cnt1=0;cnt2=0;//处理根
    for(int i=l;i<=r;i++)
    {
        if(((s[i]-'0')&1))    cnt1++;
        else cnt2++;
    }
    if(!cnt1)   cout<<"B";
    else if(!cnt2)  cout<<"I";
    else cout<<"F";
}

int main()
{
    int n;
    cin>>n;
    cin>>s;
    int m=pow(2,n);
//    cout<<m<<endl;
    deal(0,m-1);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值