时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld
题目描述
我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。
FBI树是一种二叉树[1],它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
-
T的根结点为R,其类型与串S的类型相同;
-
若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。
现在给定一个长度为2N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历[2]序列。
[1] 二叉树:二叉树是结点的有限集合,这个集合或为空集,或由一个根结点和两棵不相交的二叉树组成。这两棵不相交的二叉树分别称为这个根结点的左子树和右子树。
[2] 后序遍历:后序遍历是深度优先遍历二叉树的一种方法,它的递归定义是:先后序遍历左子树,再后序遍历右子树,最后访问根。
输入描述:
第一行是一个整数N(0 <= N <= 10)
第二行是一个长度为2N的“01”串。
输出描述:
一个字符串,即FBI树的后序遍历序列。
输入:
3
10001011
输出:
IBFBBBFIBFIIIFF
思路:核心:分治
按照左右根顺序,左右子树递归一下就好,主要处理根,不难发现只要统计区间内01的数量就可以推得根。
#include <iostream>
#include <vector>
#include <bits/stdc++.h>
#define minn -10000
using namespace std;
typedef long long ll;
int n;
string s;
ll cnt1=0,cnt2=0;//1 统计1数量 2 统计0数量
void deal(int l,int r)
{
if(l==r)
{
if((s[l]-'0')&1) cout<<"I";
else cout<<"B";
return ;
}
else//左右子树
{
int mid=(l+r)>>1;
deal(l,mid);
deal(mid+1,r);
}
cnt1=0;cnt2=0;//处理根
for(int i=l;i<=r;i++)
{
if(((s[i]-'0')&1)) cnt1++;
else cnt2++;
}
if(!cnt1) cout<<"B";
else if(!cnt2) cout<<"I";
else cout<<"F";
}
int main()
{
int n;
cin>>n;
cin>>s;
int m=pow(2,n);
// cout<<m<<endl;
deal(0,m-1);
}