FBI树

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld
题目描述
我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。

FBI树是一种二叉树[1],它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:

  1. T的根结点为R,其类型与串S的类型相同;

  2. 若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。

现在给定一个长度为2N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历[2]序列。
[1] 二叉树:二叉树是结点的有限集合,这个集合或为空集,或由一个根结点和两棵不相交的二叉树组成。这两棵不相交的二叉树分别称为这个根结点的左子树和右子树。

[2] 后序遍历:后序遍历是深度优先遍历二叉树的一种方法,它的递归定义是:先后序遍历左子树,再后序遍历右子树,最后访问根。

输入描述:
第一行是一个整数N(0 <= N <= 10)
第二行是一个长度为2N的“01”串。
输出描述:
一个字符串,即FBI树的后序遍历序列。

输入
3
10001011

输出

IBFBBBFIBFIIIFF

思路:核心:分治
按照左右根顺序,左右子树递归一下就好,主要处理根,不难发现只要统计区间内01的数量就可以推得根。

#include <iostream>
#include <vector>
#include <bits/stdc++.h>
#define minn -10000
using namespace std;

typedef long long ll;

int n;
string s;
ll cnt1=0,cnt2=0;//1 统计1数量    2 统计0数量

void deal(int l,int r)
{
    if(l==r)
    {
        if((s[l]-'0')&1)  cout<<"I";
        else cout<<"B";
        return ;
    }
    else//左右子树
    {
        int mid=(l+r)>>1;
        deal(l,mid);
        deal(mid+1,r);
    }
    cnt1=0;cnt2=0;//处理根
    for(int i=l;i<=r;i++)
    {
        if(((s[i]-'0')&1))    cnt1++;
        else cnt2++;
    }
    if(!cnt1)   cout<<"B";
    else if(!cnt2)  cout<<"I";
    else cout<<"F";
}

int main()
{
    int n;
    cin>>n;
    cin>>s;
    int m=pow(2,n);
//    cout<<m<<endl;
    deal(0,m-1);
}

### FBI Tree Implementation in Python An FBI tree is not a standard data structure or algorithm within common computer science literature, which suggests that this might be either a specialized term used in specific contexts or possibly confused with another concept. However, based on typical conventions for creating trees and binary structures in Python, an interpretation can be made. For demonstration purposes, let's assume "FBI" stands for a custom type of Binary Feature Inspection tree designed to inspect features at each node as part of some decision-making process similar to how nodes operate in other types of decision trees but specifically tailored towards certain applications like those mentioned in Windmill’s capabilities such as handling different programming languages including Python[^1]. Below is an example implementation: ```python class Node: def __init__(self, feature=None, threshold=None, left=None, right=None, value=None): self.feature = feature # The attribute being inspected. self.threshold = threshold # Threshold for splitting (if applicable). self.left = left # Left child node. self.right = right # Right child node. self.value = value # Value if it's a leaf node. def build_fbi_tree(data, labels): """Builds an FBI tree recursively.""" # Base case: If all examples have same label -> create leaf node. unique_labels = set(labels) if len(unique_labels) == 1: return Node(value=unique_labels.pop()) # Another base case could involve stopping criteria related to depth, # number of samples, etc., depending on requirements. # For simplicity, choose first feature as split criterion here; # In practice, more sophisticated methods would select optimal splits. best_feature_index = 0 # Split dataset into two parts according to chosen feature. true_data, false_data = [], [] true_labels, false_labels = [], [] for i, sample in enumerate(data): if sample[best_feature_index]: true_data.append(sample) true_labels.append(labels[i]) else: false_data.append(sample) false_labels.append(labels[i]) # Recursively construct subtrees. left_subtree = build_fbi_tree(true_data, true_labels) right_subtree = build_fbi_tree(false_data, false_labels) return Node(feature=best_feature_index, left=left_subtree, right=right_subtree) def predict(node, instance): """Predict using the constructed FBI tree.""" if node.value is not None: return node.value if instance[node.feature]: return predict(node.left, instance) else: return predict(node.right, instance) ``` This code defines a simple version of what might constitute an FBI tree where decisions are made based on whether elements meet conditions defined by thresholds associated with particular features. Note that actual implementations may vary widely based on intended functionality beyond basic inspection tasks described above.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值