ADMA 2025
The 21st International Conference on Advanced Data Mining and Applications (ADMA2025) will be held in Kyoto, Japan, from October 22 to 24, 2025. ADMA2025 aims to bring together experts on data mining from around the world and provide a leading international forum for disseminating original research findings in data mining, spanning applications, algorithms, software, and systems, as well as different applied disciplines with potential in data mining. It is our great pleasure to invite you to contribute papers and participate in this premier annual event on research and applications of data mining. Please see the calls for a variety of event activities. This is a time-honoured conference, and the accepted papers of the conference will be published by Springer in LNAI (Lecture Notes in Artificial Intelligence) and indexed in EI and DBLP.
所属领域:数据库/数据挖掘/内容检索
CCF推荐:C
录用率:22.9%(2019年)
时间地点:2025年10月22日-京都(日本)
截稿时间:2025年5月8日
大会征文
1. Data Mining Theories and Technologies
Data mining foundations and algorithms
Grand challenges in big data mining
Mining on data streams
Graph mining
Spatial and temporal data mining
Text, video, multimedia data mining
Web mining and social networks
Correlation mining and causality analysis
Recommender systems
Generative data mining
Deep learning models for data mining
Trustworthy and responsible data mining
Data mining security and privacy
Federated and privacy-aware data mining
Parallel and distributed data mining
Interactive data mining and visualisation
Benchmarking and evaluations
Trends in advanced data mining
2. Data Mining Applications
Data mining for edge intelligence
Data mining for bioinformatics
Image mining & interpretations
E-commerce data mining
Healthcare informatics
Disaster prediction and prevention
Data Mining Applications with LLMs
Financial market analysis
Software analysis with data mining
Data mining enhanced education
Data mining for AgriTech
Data mining in Internet of Things
Mining for database management
Data mining for space science
Data mining for cyber security
Data mining for eScience
Smart Cities applications
Data mining for societal science