CF600E Lomsat gelral(树上启发式合并)

题意

有一颗 n n n 个节点的树,以 1 1 1 为根节点,每个点有一个颜色 v i v_i vi。设子树 a a a 中颜色出现次数最多的颜色集合为 { b i } \{b_i\} {bi},记 a n s a = ∑ b i ans_a=\sum b_i ansa=bi。现在要求 a n s 1 , a n s 2 , . . . . a n s n ans_1,ans_2,....ans_n ans1,ans2,....ansn
其中, n , v ≤ 1 0 5 n,v\leq 10^5 n,v105

分析

这种题叫做 d s u   o n   t r e e dsu~on~tree dsu on tree,也就是树上启发式合并。
让我们先考虑暴力做法。
就是以每个节点,对子树进行 d f s dfs dfs,然后开一个桶记录颜色出现次数,最后把颜色出现次数最多的颜色加起来。这样子做复杂度是 O ( n 2 ) O(n^2) O(n2) 的。
这复杂度显然是不可接受的嘛!暴力差就差在,它计算了很多重复的东西!如果我们能让重复的东西尽量减少计算,复杂度就能够得到提升了!



看到这道题,有的同学可能一下子想的是树上莫队。
确实,莫队算法就是用来优化这些有重复计算的东西的。
不过,更优秀的算法是用启发式合并,复杂度可以做到 O ( n l o g n ) O(nlogn) O(nlogn)
一句话解释这个算法,就是保留重儿子的结果,暴力迭代轻儿子。



重儿子是什么?
如果你学过树链剖分,就能一下子知道了。不过没学过也没关系。重儿子就是这个节点所有儿子中 s i z siz siz 最大的点。如图:
在这里插入图片描述
x x x s i z siz siz 最大,所以 x x x r t rt rt 的重儿子。
t o t i tot_i toti 为颜色 i i i 的出现次数。
我们要让重复求的东西尽量少,但是子树之间又互相独立,于是我们只能钦点一个子树来保留 t o t tot tot 的值。既然重儿子如此牛逼,那我们就钦点重儿子吧!
假设我们现在要求 a n s r t ans_{rt} ansrt,我们已经保留了 x x x 子树的 t o t tot tot 数组。
那我们从 r t rt rt 开始遍历一遍子树,如果遇到 y , z y,z y,z,就继续往下 d f s dfs dfs,求出 t o t tot tot。如果遇到 x x x,那么就可以 r e t u r n return return 了,因为之前求过 t o t tot tot 了。再求一遍不是智障了吗??
这样子,单次求 a n s r t ans_rt ansrt 的复杂度是 s i z r t − s i z x siz_{rt}-siz_{x} sizrtsizx 的。
写成代码的话长这样:
在这里插入图片描述



关于复杂度

不妨考虑每个点会被访问多少次。
如果一个节点到根节点有 x x x 条轻边,那么这个节点会被访问 x x x 次。
由于一个节点到根节点的轻边数量不超过 l o g n logn logn 条。
于是总的复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)



后记

为什么这个叫树上启发式合并呢?其实,求解的过程可以看作是轻儿子不断往重儿子合并的过程,这和常规的启发式合并是一致的。从这个角度来看,复杂度也是 O ( n l o g n ) O(nlogn) O(nlogn)

代码如下

#include <bits/stdc++.h>
#define N 100005
using namespace std;
typedef long long LL;
typedef unsigned long long uLL;
LL z = 1;
int read(){
	int x, f = 1;
	char ch;
	while(ch = getchar(), ch < '0' || ch > '9') if(ch == '-') f = -1;
	x = ch - '0';
	while(ch = getchar(), ch >= '0' && ch <= '9') x = x * 10 + ch - 48;
	return x * f;
}
struct node{
	int a, b, n;
}d[N * 2];
int fa[N], siz[N], son[N], h[N], v[N], cnt;
int tot[N], Son, maxn;
LL ans[N], sum;
void cr(int a, int b){
	d[++cnt].a = a; d[cnt].b = b; d[cnt].n = h[a]; h[a] = cnt;
}
void dfs1(int a){
	int i, b;
	siz[a] = 1;
	for(i = h[a]; i; i = d[i].n){
		b = d[i].b;
		if(b == fa[a]) continue;
		fa[b] = a;
		dfs1(b);
		siz[a] += siz[b];
		if(siz[b] >= siz[son[a]]) son[a] = b;//找到重儿子 
	}
}
void add(int a, int c){//遍历 a 的子树,求出 ans[a] 
	int i, b;
	tot[v[a]] += c;//更新 tot 数组 
	if(maxn < tot[v[a]]) maxn = tot[v[a]], sum = v[a];
	else if(maxn == tot[v[a]]) sum += v[a];//这一步是在更新 sum 和 maxn
	for(i = h[a]; i; i = d[i].n){
		b = d[i].b;
		if(b == fa[a] || b == Son) continue;//遇到重儿子就return,所以只遍历轻儿子 
		add(b, c);
	}
}
void dsu(int a, int flag){
	int i, b;
	for(i = h[a]; i; i = d[i].n){
		b = d[i].b;
		if(b != fa[a] && b != son[a]) dsu(b, 1);//先求轻儿子 
	}
	if(son[a]) dsu(son[a], 0), Son = son[a]; //再求重儿子 
	add(a, 1); Son = 0; ans[a] = sum;//求出 ans[a],同时把重儿子标记去除(没去除的话无法清空 tot 数组 
	if(flag) add(a, -1), sum = 0, maxn = 0;//如果当前节点是轻儿子,就清空 tot 数组并且重置 sum 和 maxn 
}
int main(){
	int i, j, n, m, a, b;
	n = read();
	for(i = 1; i <= n; i++) v[i] = read();
	for(i = 1; i < n; i++){
		a = read(); b = read();
		cr(a, b); cr(b, a);
	}
	dfs1(1);
	dsu(1, 0);
	for(i = 1; i <= n; i++) printf("%lld ", ans[i]);
	return 0;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值