莫队算法合集

前言

莫队算法,是一种离线的根号算法,可以解决一类区间询问问题,适用范围很广。莫队算法的本质就是分块 + 暴力,通过适当的操作把时间复杂度降为 O ( n n ) O(n\sqrt{n}) O(nn )

普通莫队

一、适用问题

用于不带修改的询问问题,且由区间 [ L , R ] [L,R] [L,R] 可以 O ( 1 ) O(1) O(1) O ( l o g n ) O(logn) O(logn) 扩展到 [ L − 1 , R ] , [ L + 1 , R ] , [ L , R − 1 ] , [ L , R + 1 ] [L-1,R],[L+1,R],[L,R-1],[L,R+1] [L1,R],[L+1,R],[L,R1],[L,R+1].

二、算法实现
  1. 先将原序列按照 n \sqrt{n} n 大小进行分块,总共分成 n \sqrt{n} n 块。
  2. 对询问按照以下方式排序:
    ①:如果左端点所在的块编号不同,按左端点所在块的编号排序
    ②:如果左端点所在的块编号相同,按右端点所在块的编号排序
  3. 每次从上一次询问 [ L , R ] [L,R] [L,R] 暴力转移至下一次询问 [ L ′ , R ′ ] [L',R'] [L,R]
三、时间复杂度分析

对于每一块内的询问,其右端点单调增,因此右端点移动次数为 O ( n ) O(n) O(n) 次,总共有 n \sqrt{n} n 块,因此右端点移动的总复杂度为 O ( n n ) O(n\sqrt{n}) O(nn )。对于左端点,每次询问要么在块内移动,要么跳到下一个块,每次询问的移动次数为 O ( n ) O(\sqrt{n}) O(n ),总的复杂度为 O ( m n ) O(m\sqrt{n}) O(mn )
因此,普通莫队算法的复杂度为 O ( n n + m n ) O(n\sqrt{n}+m\sqrt{n}) O(nn +mn )

四、习题
[SDOI 2009] HH的项链

给出长度为 n ( n ≤ 1 0 5 ) n(n\le 10^5) n(n105) 的序列 { a n } ( a i ≤ 1 0 6 ) \{a_n\}(a_i\le10^6) {an}(ai106) m ( m ≤ 1 0 5 ) m(m\le 10^5) m(m105) 次询问,每次询问给出 l , r l,r l,r,求 [ l , r ] [l,r] [l,r] a i a_i ai 的种类数。

根据上面所说的的直接做即可。

带修改莫队

一、适用问题

在普通莫队的基础上增加了单点修改操作,复杂度为 O ( n 5 3 ) O(n^{\frac{5}{3}}) O(n35)
在普通莫队的基础上加入一个时间轴,即从普通莫队的 ( l , r ) (l,r) (l,r) 变为 ( l , r , t i m e ) (l,r,time) (l,r,time)。每次往下面几个位置移动:

  • ( l − 1 , r , t i m e ) (l-1,r,time) (l1,r,time)
  • ( l + 1 , r , t i m e ) (l+1,r,time) (l+1,r,time)
  • ( l , r − 1 , t i m e ) (l,r-1,time) (l,r1,time)
  • ( l , r + 1 , t i m e ) (l,r+1,time) (l,r+1,time)
  • ( l , r , t i m e − 1 ) (l,r,time-1) (l,r,time1)
  • ( l , r , t i m e + 1 ) (l,r,time+1) (l,r,time+1)

这样的转移也是 O ( 1 ) O(1) O(1) 的。

二、算法实现
  1. 先将原序列按 n 2 3 n^\frac{2}{3} n32 进行分块,分成 n 1 3 n^\frac{1}{3} n31 块。
  2. 对询问按以下方式排序,第一关键字是左端点所在块,第二关键字是右端点所在块,第三关键字是时间。
  3. 对于 l , r l,r l,r 的移动,我们按普通莫队那样子做就行了。
  4. 对于修改操作,也就是 t i m e time time 的移动,假设是把位置 a p a_p ap 的值改成 x x x。我们先看 p p p 是否在 [ L , R ] [L,R] [L,R] 内,如果在 [ L , R ] [L,R] [L,R] 内,则要进行一次 d e l del del a d d add add 操作。然后我们交换 a p a_p ap x x x 的值,为了方便撤销操作的时候用到,因为下一次撤销这个操作,就相当于把 x x x 改成 a p a_p ap
三、时间复杂度分析

左右端点 L , R L, R L,R 会移动 O ( m n 2 3 ) O(mn^\frac{2}{3}) O(mn32) 次。
时间 t i m e time time 会移动 O ( n 1 3 n 1 3 n ) = O ( n 5 3 ) O(n^{1\over 3}n^{1\over 3}n)=O(n^\frac{5}{3}) O(n31n31n)=O(n35) 次。
因此总复杂度为 O ( m n 2 3 + n 5 3 ) O(mn^\frac{2}{3}+n^\frac{5}{3}) O(mn32+n35)

四、习题
[国家集训队]数颜色 / 维护队列

给出长度为 n ( n ≤ 1 0 5 ) n(n\le 10^5) n(n105) 的序列 { a n } ( a i ≤ 1 0 5 ) \{a_n\}(a_i\le 10^5) {an}(ai105) m ( m ≤ 1 0 5 ) m(m\le 10^5) m(m105) 次操作,每次操作为以下两种:

  1. 给出 l , r l,r l,r,求区间 [ l , r ] [l,r] [l,r] 的颜色种类数
  2. 给出 p , x p,x p,x,将 a p a_p ap 修改为 x x x

做法已在算法实现中完整提及,下面给出代码。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;

void debug_out(){
    cerr << endl;
}
template<typename Head, typename... Tail>
void debug_out(Head H, Tail... T){
    cerr << " " << to_string(H);
    debug_out(T...);
}
#ifdef local
#define debug(...) cerr<<"["<<#__VA_ARGS__<<"]:",debug_out(__VA_ARGS__)
#else
#define debug(...) 55
#endif

const int N = 3e6 + 5;
int bl[N], a[N], ans[N], cnt[N], B, tot;
struct node{
	int l, r, t, o;
	bool operator < (const node& A) const{
		if(bl[l] != bl[A.l]) return bl[l] < bl[A.l];
		if(bl[r] != bl[A.r]) return bl[r] < bl[A.r];
		return t < A.t;
	}
}q[N], Q[N];
void add(int x){
	if(!cnt[x]) tot++;
	cnt[x]++;
}
void del(int x){
	cnt[x]--;
	if(!cnt[x]) tot--;
}
int main(){
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	int n, m;
	cin >> n >> m;
	B = pow(n, 0.666);
	for(int i = 1; i <= n; i++) cin >> a[i], bl[i] = (i - 1) / B + 1;
	int m1 = 0, m2 = 0;
	for(int i = 1, l, r; i <= m; i++){
		char o[3];
		cin >> o >> l >> r;
		if(o[0] == 'Q') q[++m1] = {l, r, i, m2};
		if(o[0] == 'R') Q[++m2] = {l, r, i, 1};
	}
	sort(q + 1, q + m1 + 1);
	int L = 1, R = 0, T = 0;
	for(int i = 1; i <= m1; i++){
		while(L > q[i].l) L--, add(a[L]);
		while(L < q[i].l) del(a[L]), L++;
		while(R > q[i].r) del(a[R]), R--;
		while(R < q[i].r) R++, add(a[R]);
		while(T < q[i].o){
			T++;
			if(Q[T].l >= L && Q[T].l <= R) del(a[Q[T].l]), add(Q[T].r);
			swap(Q[T].r, a[Q[T].l]);
		}
		while(T > q[i].o){
			if(Q[T].l >= L && Q[T].l <= R) del(a[Q[T].l]), add(Q[T].r);
			swap(Q[T].r, a[Q[T].l]);	
			T--;
		}
		ans[q[i].t] = tot; 
	}
	for(int i = 1; i <= m; i++) if(ans[i]) cout << ans[i] << '\n';
	return 0;
}

树上莫队

一、适用问题

这里的树上莫队指的是解决询问是链的情况。如果询问问的是子树,那么直接对 d f s dfs dfs 序莫队即可。树上莫队本质上是通过欧拉序将问题转化为普通莫队,复杂度也是 O ( n n ) O(n\sqrt{n}) O(nn )

二、欧拉序

在讲树上莫队之前,我们得先了解一棵树的欧拉序。
从根开始进行 d f s dfs dfs,每个节点进栈和出栈时分别记入序列,这个序列就是这棵树的欧拉序。
在这里插入图片描述
例如上面这棵以 1 1 1 为根的树,其欧拉序为 123325665441 123325665441 123325665441
求欧拉序的代码如下。

void dfs(int a, int pre){
	s[a] = ++dft;
	Seq[dft] = a;
	for(int b: E[a]){
		if(b == pre) continue;
		st[b][0] = a;
		dep[b] = dep[a] + 1;
		dfs(b, a);
	}
	t[a] = ++dft;
	Seq[dft] = a;
}

我们记 s x s_x sx 表示 x x x 入栈的编号, t x t_x tx 表示 x x x 出栈的编号。
接下来我们考虑树上的某一条链 ( u , v ) (u,v) (u,v),不妨令 s u < s v s_u<s_v su<sv,分两种情况讨论:

  1. l c a ( u , v ) = u lca(u,v)=u lca(u,v)=u,那么其对应的欧拉序为 [ s u , s v ] [s_u,s_v] [su,sv],比如 ( 1 , 6 ) (1,6) (1,6),其欧拉序为 1233256 1233256 1233256,可以看到在这条链上的 1 , 5 , 6 1,5,6 1,5,6 只出现了 1 1 1 次,而不在这条链上的 2 , 3 2,3 2,3 则出现了两次。
  2. l c a ( u , v ) ! = u lca(u,v)!=u lca(u,v)!=u,那么其对应的欧拉序为 [ t u , s v ] [t_u,s_v] [tu,sv],比如 ( 3 , 6 ) (3,6) (3,6),其对应的欧拉序为 3256 3256 3256,发现还缺少了 l c a ( 3 , 6 ) = 1 lca(3,6)=1 lca(3,6)=1,因此要把 l c a lca lca 额外加上。
三、算法实现

先求出欧拉序,然后按普通莫队来做即可。但是有一点要注意,我们要记录一个数出现了多少次,如果出现了 2 2 2 次,那么此时的操作应该为抵消前面的贡献,否则应该为加上一个贡献。

四、习题
[WC2013] 糖果公园

给出一棵树,每次操作为修改一个数的值,或查询 ( x , y ) (x,y) (x,y) 这条链上的答案,答案为 ∑ x V x ∑ i = 1 c n t x W i \sum\limits_xV_x\sum\limits_{i=1}^{cnt_x}W_i xVxi=1cntxWi n , m ≤ 2 × 1 0 5 n,m\le 2\times 10^5 n,m2×105

这题就是把带修改莫队搬到了树上,如果你学会了带修改莫队,且明白了树上莫队的原理,那么就很容易打出代码了。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;

void debug_out(){
    cerr << endl;
}
template<typename Head, typename... Tail>
void debug_out(Head H, Tail... T){
    cerr << " " << to_string(H);
    debug_out(T...);
}
#ifdef local
#define debug(...) cerr<<"["<<#__VA_ARGS__<<"]:",debug_out(__VA_ARGS__)
#else
#define debug(...) 55
#endif

const int N = 2e5 + 5, M = 1e6 + 5;
vector<int> E[N];
int V[N], W[N], vis[N], a[N], s[N], t[N], bl[N], dep[N], st[N][21], cnt[M], dft, Seq[N];
LL ans[N];
void dfs(int a, int pre){
	s[a] = ++dft;
	Seq[dft] = a;
	for(int b: E[a]){
		if(b == pre) continue;
		st[b][0] = a;
		dep[b] = dep[a] + 1;
		dfs(b, a);
	}
	t[a] = ++dft;
	Seq[dft] = a;
}
void build_st(int n){
	for(int i = 1; i <= 20; i++){
		for(int j = 1; j <= n; j++) st[j][i] = st[st[j][i - 1]][i - 1];
	}
}
int lca(int a, int b){
	if(dep[a] < dep[b]) swap(a, b);
	int D = dep[a] - dep[b];
	for(int i = 20; i >= 0; i--) if(D >> i & 1) a = st[a][i];
	if(a == b) return a;
	for(int i = 20; i >= 0; i--) if(st[a][i] != st[b][i]) a = st[a][i], b = st[b][i];
	return st[a][0];
}
struct node{
	int l, r, t, i, o;
	bool operator < (const node& A) const{
		if(bl[l] != bl[A.l]) return bl[l] < bl[A.l];
		if(bl[r] != bl[A.r]) return bl[r] < bl[A.r];
		return t < A.t;
	}
}q[N], Q[N];
LL tot = 0;
void Add(int x){
	cnt[x]++;
	tot += (LL)W[cnt[x]] * V[x];
}
void Del(int x){
	tot -= (LL)W[cnt[x]] * V[x];
	cnt[x]--;
}
void add(int i, int x){
	if(!vis[i]) Add(x);
	else Del(x);
	vis[i] ^= 1;
}
int main(){
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	int n, m, qq;
	cin >> n >> m >> qq;
	for(int i = 1; i <= m; i++) cin >> V[i];
	for(int i = 1; i <= n; i++) cin >> W[i];
	for(int i = 1, u, v; i < n; i++){
		cin >> u >> v;
		E[u].push_back(v);
		E[v].push_back(u);
	}
	for(int i = 1; i <= n; i++) cin >> a[i];
	dfs(1, 0);
	build_st(n);
	int n_ = dft;
	const int B = pow(n_, 2.0 / 3);
	for(int i = 1; i <= n_; i++) bl[i] = (i - 1) / B + 1;
	int m1 = 0, m2 = 0;
	for(int i = 1, o, l, r; i <= qq; i++){
		cin >> o >> l >> r;
		if(o == 0) Q[++m2] = {l, r, i};
		else{
			int Lca = lca(l, r), L, R, f = (Lca == l || Lca == r)? 0: Lca;
			if(s[l] > s[r]) swap(l, r);
			if(l == Lca) L = s[l], R = s[r];
			else L = t[l], R = s[r];
			q[++m1] = {L, R, m2, i, f};
		}
	}
	sort(q + 1, q + m1 + 1);
	int L = 1, R = 0, T = 0;
	for(int i = 1; i <= m1; i++){
		while(L < q[i].l) add(Seq[L], a[Seq[L]]), L++;
		while(L > q[i].l) L--, add(Seq[L], a[Seq[L]]);
		while(R < q[i].r) R++, add(Seq[R], a[Seq[R]]);
		while(R > q[i].r) add(Seq[R], a[Seq[R]]), R--;
		while(T < q[i].t){
			T++;
			if(vis[Q[T].l]) add(Q[T].l, a[Q[T].l]), add(Q[T].l, Q[T].r);
			swap(Q[T].r, a[Q[T].l]);
		}
		while(T > q[i].t){
			if(vis[Q[T].l]) add(Q[T].l, a[Q[T].l]), add(Q[T].l, Q[T].r);
			swap(Q[T].r, a[Q[T].l]);
			T--;
		}
		if(q[i].o) assert(vis[q[i].o] == 0), add(q[i].o, a[q[i].o]), ans[q[i].i] = tot, add(q[i].o, a[q[i].o]);
		else ans[q[i].i] = tot;
	}
	for(int i = 1; i <= qq; i++) if(ans[i]) cout << ans[i] << '\n';
	return 0;
}

回滚莫队

一、适用问题

是普通莫队的一种改版。当可以 O ( 1 ) O(1) O(1) O ( l o g n ) O(logn) O(logn) 实现添加操作而无法轻易实现删除操作或可以 O ( 1 ) O(1) O(1) O ( l o g n ) O(logn) O(logn) 实现删除操作而无法轻易实现添加操作时,就要用到回滚莫队了,复杂度也是 O ( n n ) O(n\sqrt{n}) O(nn ) 的。
下面的讨论基于容易实现添加操作而不容易实现删除操作的莫队。

二、算法实现
  1. 先将原序列按照 n \sqrt{n} n 大小进行分块,总共分成 n \sqrt{n} n 块。
  2. 如果询问的 l , r l,r l,r 在同一个块内,则直接暴力操作,复杂度为 O ( n n ) O(n\sqrt{n}) O(nn )
  3. 现在的询问 l , r l,r l,r 都不在同一块内了,我们按 l l l 所在块为第一关键字, r r r 为第二关键字排序。
  4. 我们集中处理每一个左端点所在块的询问,设该块的右端点为 R ′ R' R。我们一开始先将 L L L 置为 R ′ + 1 R'+1 R+1,将 R R R 置为 R ′ R' R。然后对于每一个询问 l , r l,r l,r,先移动 R R R r r r,记录下此时的状态,记为 l s t lst lst,然后将 L L L R ′ R' R 移动到 l l l,得到当前询问的答案 a n s ans ans。接下来就是回滚操作了,我们把 L L L 一步一步移回 R ′ + 1 R'+1 R+1,并撤销 [ L , R ′ ] [L,R'] [L,R] 的所有数的贡献,最后将 a n s ans ans 置为 l s t lst lst
三、时间复杂度分析

注意到,对于每一个块的询问,其右端点总共只会移动 O ( n ) O(n) O(n) 次,因此右端点总共移动 O ( n n ) O(n\sqrt{n}) O(nn ) 次。对于左端点,对于每一个询问,都会移动 O ( n ) O(\sqrt{n}) O(n ) 次(从 R ′ + 1 R'+1 R+1 移动到块内的某一个点),因此左端点总移动次数为 O ( m n ) O(m\sqrt{n}) O(mn )。因此总的时间复杂度是 O ( n n + m m ) O(n\sqrt{n}+m\sqrt{m}) O(nn +mm ) 的。

四、习题
AT1219 歴史の研究

有长度为 n ( n ≤ 1 0 5 ) n(n\le 10^5) n(n105) 的序列 { a n } ( a i ≤ 1 0 9 ) \{a_n\}(a_i\le 10^9) {an}(ai109) m ( m ≤ 1 0 5 ) m(m\le 10^5) m(m105) 次询问,每次询问区间 [ L , R ] [L,R] [L,R] 中每个数贡献的最大值,其中一个数 x x x 的贡献为 c n t x × v x cnt_x\times v_x cntx×vx

由于是求最大值,因此添加操作很好更新,但是删除操作就很难更新。因此需要使用回滚莫队。代码如下。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;

void debug_out(){
    cerr << endl;
}
template<typename Head, typename... Tail>
void debug_out(Head H, Tail... T){
    cerr << " " << to_string(H);
    debug_out(T...);
}
#ifdef local
#define debug(...) cerr<<"["<<#__VA_ARGS__<<"]:",debug_out(__VA_ARGS__)
#else
#define debug(...) 55
#endif

const int N = 1e5 + 5;
int a[N], b[N], bl[N], cnt[N], tot;
LL mx, ans[N];
struct node{
	int l, r, i;
	bool operator < (const node& A) const{
		if(bl[l] != bl[A.l]) return bl[l] < bl[A.l];
		return r < A.r;
	}
}q[N];
void add(int x){
	cnt[x]++;
	mx = max(mx, (LL)cnt[x] * b[x]);
}
int main(){
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	int n, m;
	cin >> n >> m;
	for(int i = 1; i <= n; i++) cin >> a[i], b[i] = a[i];
	sort(b + 1, b + n + 1);
	int n_ = unique(b + 1, b + n + 1) - b - 1;
	for(int i = 1; i <= n; i++) a[i] = lower_bound(b + 1, b + n_ + 1, a[i]) - b;
	const int B = sqrt(n);
	for(int i = 1; i <= n; i++) bl[i] = (i - 1) / B + 1;
	for(int i = 1, l, r; i <= m; i++){
		cin >> l >> r;
		if(bl[l] == bl[r]){
			LL mx = 0;
			for(int j = l; j <= r; j++){
				cnt[a[j]]++;
				mx = max(mx, (LL)cnt[a[j]] * b[a[j]]);
			}
			for(int j = l; j <= r; j++) cnt[a[j]]--;
			ans[i] = mx;
		}
		else{
			q[++tot] = {l, r, i};
		}
	}
	sort(q + 1, q + tot + 1);
	for(int i = 1, j = 1; i <= tot; i = j + 1, j = i){
		while(bl[q[j + 1].l] == bl[q[j].l]) j++;
		int K = min(n, bl[q[j].l] * B) + 1, L = K, R = K - 1;
		for(int k = i; k <= j; k++){
			while(R < q[k].r) R++, add(a[R]);
			LL lst = mx;
			while(L > q[k].l) L--, add(a[L]);
			ans[q[k].i] = mx;
			mx = lst;
			while(L < K) cnt[a[L]]--, L++;
		}
		mx = 0;
		memset(cnt, 0, sizeof(cnt));
	}
	for(int i = 1; i <= m; i++) cout << ans[i] << '\n';
	return 0;
}
Rmq Problem / mex

给出长度为 n n n 的序列 { a n } \{a_n\} {an},给出 m m m 次询问,每次询问区间 [ l , r ] [l,r] [l,r] 的最小未出现的自然数。 ( n , m , a i ≤ 2 × 1 0 5 ) (n,m,a_i\le 2\times 10^5) (n,m,ai2×105)

由于删除操作很好更新 a n s ans ans,添加操作很难更新 a n s ans ans,因此我们使用回滚莫队。这里需要注意的是,由于区间只有内缩,我们需要将 r r r 从大到小排序。而且在处理一个块的询问时,设 L ′ L' L 为该块的左端点,我们把 L L L 置为 L ′ L' L,把 R R R 置为 n n n,同时更新下此时的状态,然后再不断将区间内缩和回滚。
代码如下。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;

void debug_out(){
    cerr << endl;
}
template<typename Head, typename... Tail>
void debug_out(Head H, Tail... T){
    cerr << " " << to_string(H);
    debug_out(T...);
}
#ifdef local
#define debug(...) cerr<<"["<<#__VA_ARGS__<<"]:",debug_out(__VA_ARGS__)
#else
#define debug(...) 55
#endif

const int N = 2e5 + 5;
int a[N], bl[N], cnt[N], tot;
int mex, ans[N];
struct node{
	int l, r, i;
	bool operator < (const node& A) const{
		if(bl[l] != bl[A.l]) return bl[l] < bl[A.l];
		return r > A.r;
	}
}q[N];
void del(int x){
	cnt[x]--;
	if(!cnt[x]) mex = min(mex, x);
}
int main(){
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	int n, m;
	cin >> n >> m;
	for(int i = 1; i <= n; i++) cin >> a[i];
	const int B = sqrt(n);
	for(int i = 1; i <= n; i++) bl[i] = (i - 1) / B + 1;
	for(int i = 1, l, r; i <= m; i++){
		cin >> l >> r;
		if(bl[l] == bl[r]){
			for(int j = l; j <= r; j++) cnt[a[j]]++;
			int mex = 0;
			while(cnt[mex]) mex++;
			for(int j = l; j <= r; j++) cnt[a[j]]--;
			ans[i] = mex;
		}
		else q[++tot] = {l, r, i};
	}
	sort(q + 1, q + tot + 1);
	for(int i = 1, j = 1; i <= tot; i = j + 1, j = i){
		while(bl[q[j + 1].l] == bl[q[j].l]) j++;
		int K = (bl[q[j].l] - 1) * B + 1, L = K, R = n;
		for(int j = L; j <= R; j++) cnt[a[j]]++;
		mex = 0;
		while(cnt[mex]) mex++;
		for(int k = i; k <= j; k++){
			debug(q[k].l, q[k].r, K, L, R);
			while(R > q[k].r) del(a[R]), R--;
			int lst = mex;
			while(L < q[k].l) del(a[L]), L++;
			ans[q[k].i] = mex;
			mex = lst;
			while(L > K) L--, cnt[a[L]]++;
		}
		mex = 0;
		memset(cnt, 0, sizeof(cnt));
	}
	for(int i = 1; i <= m; i++) cout << ans[i] << '\n';
	return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值