2021牛客多校10 Game of Death(容斥ntt)

题意

n n n 个人,每个人会等概率随机向另外一个人开枪,有 p p p 的概率击中。问恰好有 k ( k = 0 , 1 , 2 , . . , n ) k(k=0,1,2,..,n) k(k=0,1,2,..,n) 个人活着的概率,对 998244353 998244353 998244353 取模。
其中, n ≤ 3 × 1 0 5 n\le 3\times10^5 n3×105

分析

f i f_i fi 为特定 i i i 个人活着,其它人不管死活的概率。
那么根据容斥原理, a n s k = C n k ∑ i = k n ( − 1 ) i − k C n − k , i − k f i = C n k ( n − k ) ! ∑ i = k n ( − 1 ) i − k ( i − k ) ! f i ( n − i ) ! ans_k=C_n^k\sum\limits_{i=k}^{n}(-1)^{i-k}C_{n-k}^{,i-k}f_i=C_n^k(n-k)!\sum\limits_{i=k}^{n}\frac{(-1)^{i-k}}{(i-k)!}\frac{f_i}{(n-i)!} ansk=Cnki=kn(1)ikCnk,ikfi=Cnk(nk)!i=kn(ik)!(1)ik(ni)!fi。后面是个卷积的形式,翻转一下然后 n t t ntt ntt 即可。
考虑计算 f i f_i fi。计 q = 1 − p q = 1-p q=1p
i i i 个人要么杀不死人,要么成功击中另外 n − i n-i ni 个人中的一个。另外 n − i n-i ni 个人要么杀不死人,要么成功击中 n − i − 1 n-i-1 ni1 个人中的一个。因此, f i = ( q + p × n − i n − 1 ) i ( q + p × n − i − 1 n − 1 ) n − i f_i=(q+p\times \frac{n-i}{n-1})^i(q+p\times \frac{n-i-1}{n-1})^{n-i} fi=(q+p×n1ni)i(q+p×n1ni1)ni
这样这题就做完了,复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)

代码如下

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

void debug_out(){
    cerr << endl;
}
template<typename Head, typename... Tail>
void debug_out(Head H, Tail... T){
    cerr << ' ' << H;
    debug_out(T...);
}
#ifdef local
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
#define debug(...) 55
#endif
typedef unsigned int uint;
namespace Poly {
#define LL long long
    int W;
    const int mod = 998244353;
    typedef vector<uint> poly;
    constexpr uint Max_size = 1 << 20 | 5;
    constexpr int gn = 3;

    LL power(LL a, LL b) {
        LL res = 1;
        while (b) {
            if (b & 1)res = res * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return res;
    }

    inline uint mf(uint x) {
        return (static_cast<LL>(x) << 32) / mod;
    }

    int sz;
    uint w[Max_size], w_mf[Max_size];

    inline void init(int n) {
        for (sz = 2; sz < n; sz <<= 1);
        uint pr = power(gn, (mod - 1) / sz);
        w[sz / 2] = 1, w_mf[sz / 2] = mf(w[sz / 2]);
        for (int i = 1; i < sz / 2; ++i)
            w[sz / 2 + i] = (LL) w[sz / 2 + i - 1] * pr % mod, w_mf[sz / 2 + i] = mf(w[sz / 2 + i]);
        for (int i = sz / 2 - 1; i; --i)
            w[i] = w[i << 1], w_mf[i] = w_mf[i << 1];
    }

    inline void NTT(poly &A, const int L) {
        for (int d = L >> 1; d; d >>= 1)
            for (int i = 0; i != L; i += d << 1)
                for (int j = 0; j != d; ++j) {
                    uint x = A[i + j] + A[i + d + j];
                    if (x >= mod * 2)
                        x -= mod * 2;
                    LL t = A[i + j] + mod * 2 - A[i + d + j];
                    LL q = t * w_mf[d + j] >> 32;
                    uint y = t * w[d + j] - q * mod;
                    A[i + j] = x, A[i + d + j] = y;
                }
    }

    inline void INTT(poly &A, const int L) {
        for (int d = 1; d != L; d <<= 1)
            for (int i = 0; i != L; i += d << 1)
                for (int j = 0; j != d; ++j) {
                    uint x = A[i + j];
                    if (x >= mod * 2)
                        x -= mod * 2;
                    LL y = A[i + d + j];
                    LL q = y * w_mf[d + j] >> 32;
                    LL t = y * w[d + j] - q * mod;
                    A[i + j] = x + t, A[i + d + j] = x + mod * 2 - t;
                }
        reverse(A.begin() + 1, A.end());
        if (L == 2) {
            if (A[0] >= mod * 2)
                A[0] -= mod * 2;
            if (A[1] >= mod * 2)
                A[1] -= mod * 2;
        }
        int k = __builtin_ctz(L);
        for (int i = 0; i != L; ++i) {
            LL m = -A[i] & (L - 1);
            A[i] = (A[i] + m * mod) >> k;
        }
    }

    poly operator+(poly a, poly b) {
        int n = max(a.size(), b.size());
        a.resize(n), b.resize(n);
        for (int i = 0; i < n; i++) a[i] = (a[i] + b[i]) % mod;
        return a;
    }

    poly operator-(poly a, poly b) {
        int n = max(a.size(), b.size());
        a.resize(n), b.resize(n);
        for (int i = 0; i < n; i++) a[i] = (a[i] - b[i] + mod) % mod;
        return a;
    }

    poly operator*(poly a, poly b) {
        int n = a.size() + b.size() - 1, R = 2;
        for (; R <= n; R <<= 1);
        init(R);
        a.resize(R), b.resize(R);
        NTT(a, R);
        NTT(b, R);
        for (int i = 0; i < R; i++)a[i] = 1LL * b[i] * a[i] % mod;
        INTT(a, R);
        a.resize(n);
        for (int i = 0; i < n; i++)if (a[i] >= mod)a[i] -= mod;
        return a;
    }
}using namespace Poly;
const int N = 3e5 + 5;
int fac[N], inv[N];
int C(int n, int m){
    if(n < m) return 0;
    return (ll)fac[n] * inv[m] % mod * inv[n - m] % mod;
}
int main() {
#ifdef local
    freopen("../in.txt", "r", stdin);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    int n, a, b;
    cin >> n >> a >> b;
    int p = (ll)a * power(b, mod - 2) % mod, q = mod + 1 - p;
    fac[0] = 1;
    for(int i = 1; i <= n; i++) fac[i] = (ll)fac[i - 1] * i % mod;
    inv[n] = power(fac[n], mod - 2);
    for(int i = n - 1; i >= 0; i--) inv[i] = (ll)inv[i + 1] * (i + 1) % mod;
    poly f(n + 1), g(n + 1);
    int I = power(n - 1, mod - 2);
    for(int i = 0; i <= n; i++){
        if(i % 2) f[i] = mod - 1;
        else f[i] = 1;
        int x = (q + (ll)p * (n - i) % mod * I % mod) % mod;
        int y = (q + (ll)p * (n - i - 1) % mod * I % mod) % mod;
        g[i] = power(x, i) * power(y, n - i) % mod * inv[n - i] % mod;
        f[i] = (ll)f[i] * inv[i] % mod;
    }
    reverse(f.begin(), f.begin() + n + 1);
    g = f * g;
    for(int i = 0; i <= n; i++) cout << (ll)g[n + i] * C(n, i) % mod * fac[n - i] % mod << '\n';
    return 0;
}
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值