[算法]平方根倒数速算法FISR详解,STM32G071实战测试

家介绍经典C语言平方根倒数速算法(或称Fast Inverse Square Root)。详细推导魔法数字0x5f3759df究竟从何而来,并最终在MCU上对比该算法和<math.h>中double sqrt(double)方法的性能表现并给出使用建议。本文不涉及高深的数学变换或复杂的计算机原理,但希望读者具备一些C语言基础;此外任何相关领域的积累都可能有助于内容理解。
希望本文能帮助到有需要的朋友。

平方根倒数简介
求平方根倒数在向量单位化操作中很常见,先举个例子,假设在二维平面内有一向量:

将该向量单位化,即将向量模长缩放为1,用向量除以它的模,可以表达成下式:

此处,单位向量的坐标,即是原向量坐标和模长倒数的乘积。
一般而言,对任一数x, 

 即被称作平方根倒数。
C语言内求平方根倒数

C语言内求平方根属于常规操作,因为<math.h>中已经提供了double sqrt(double)函数给大家调用,该函数接收一个double型变量,并返回其平方根。部分场合使用float类型,如果是我,我会这么写:

#include <math.h>

float x =0;

float inverse_square_root =0;

inverse_square_root =1/sqrt(x);

事实上,大多数计算机处理加法和乘法时更快,对于除法和开方运算,速度相对较慢。定义在<math.h>中的sqrt()方法其系统开销是比较大的,尤其在部分MCU上,有时不能很好地满足系统实时性要求。

速算法介绍
该情景与上世纪末PC算力较低的情况颇有几分相似,而在那段PC内存按MB计算的岁月里,优秀的C语言程序员们找到了该问题的解决方法:平方根倒数速算法(Fast Inverse Square Root),据说该算法最早由GaryTarolli在SGI Indigo开发中使用,对起源感兴趣的朋友可自行探究。
平方根倒数速算法是一个单独的函数实现,代码如下:
float FInvSqrtRoot(float x)

{

    long i = 0;

    float y, halfx;

    halfx = 0.5 * x;

    i = *(long*) &x;                 // 按照整型方法操作浮点数

    i = 0x5f3759df - (i >> 1);       // 魔法?

    y = *(float*) &i;                // 获得平方根倒数近似值

    y = y * (1.5 - halfx * y * y);   // 一次牛顿迭代

    return y;

}

该函数接收一个float型变量,并返回其平方根倒数。

Step1.奇怪的地址类型转换

i = *(long *) &x;                // 按照整型方法操作浮点数

代码第四行将浮点数x按照整型数据操作,这里的操作方法与类型转换有很大不同;类型转换将内存中按照浮点数标准表示的值近似为最接近的整数,并按照整数标准储存在内存中,像这样:i=(long)x;要理解*(long *) &x与(long)x的不同,需要了解浮点数在计算机中的表示方法。
浮点数在计算机中使用类似科学计数法的形式储存,float类型的浮点数使用32bit表示,结构如下:

最高位,第31位,为符号位,若S=0,该浮点数为正数;若S=1,该浮点数为负数。
接下来的8位数字,为指数部分,指数E范围为[0,255],为可以表示负指数,规定在E的范围基础上-127,即[-127,128];例如E=3表示2^(3-127)=2^(-124)。
接下来的23位数字,为尾数部分,即有效数字部分。由于二进制下有效数字必为1.xxx的形式,整数部分必为1,因此无需使用第22位表示整数1,而是直接表示小数点后一位,整数部分不在尾数M中体现,只在计算时加上;即M=0101…表示二进制的1.0101。以上,float型浮点数在内存中的存放形式已经明确。
现假设有一float型浮点正数x,其在内存中按照上述方式存放,即:

则x表示的浮点数值为:

注意平方根倒数速算法只接收正数,所以全文只讨论x为正浮点数的情况

此时再回来看i=*(long *) &x这行代码;

第一步;取x的地址,注意此时x的地址指向一个浮点数,内存中对应的数据为:E*2^23+M

第二步;将该地址转换为指向long整型的地址,注意转换的是地址类型而不是数据,现在内存中的数据仍然是:E*2^23+M

第三步,取该地址指向的数据,赋给i;此时程序将按照整型标准去读取这个数据。因此,可以将i理解为x对应内存数据的整型解释。现在可以对i进行整型支持的操作,比如接下来要用到的位移操作。

准备工作已经完成,现在进入算法的核心,即施放魔法:

i = 0x5f3759df - (i >> 1);       // 魔法?

要理解这行代码,需要一点点数学铺垫;我们先给x表示的浮点数取个对数:

其中,M表示尾数,M/2^23范围在[0,1)之间;在极限理论中,若x属于[0,1],有以下关系:

即在x接近0或1的条件下,log2(1+x)接近x;很明显当x不靠近0或1时,误差会变大,如下图左侧所示:

如果在等式右侧加入一个微小量u,可以使得x+u在[0,1]范围内近似log2(1+x),如上图右侧所示:

所以有:

因此,

此时再倒回去看浮点数x在内存中的存放形式,即:E*2^23+M;

因此可以认为浮点数的对数形式与其内存存放形式相似,只是添加了缩放和平移。我们知道:

令:

所以有:

将上式展开:

稍作整理: 

这太棒了,因为浮点数在内存中的存放形式,即:E*2^23+M

而上式中

则相当于对其内存形式右移1位,即

由此可知,魔法数字0x5f3759df就是包含u在内的修正项:

至此我们已经完成了魔法代码的解析:

 

这太棒了,因为浮点数在内存中的存放形式,即:E*2^23+M

而上式中

则相当于对其内存形式右移1位,即

由此可知,魔法数字0x5f3759df就是包含u在内的修正项:

至此我们已经完成了魔法代码的解析:

i = 0x5f3759df - (i >> 1);       // 魔法

i就是x对应内存数据的整型解释,将i右移1位相当于乘以二分之一,也就是1/2*(Ex*2^23+Mx);

等式右侧的运算结果,就是 

 ,也就是

注意此时程序认为i是整型变量,所以需要下一行代码再将其转换为浮点型;

y = *(float *) &i;              // 获得平方根倒数估计值

此时y即是x的平方根倒数。

Step3.优化结果
由于上述推导中,引入了修正系数u,所以y只是近似解。
接下来使用牛顿法(Newton Method)进行一次迭代,使y更接近准确值。简单来说,使用牛顿法,可以从一个近似解获得一个更接近准确答案的解;牛顿法的核心思想是迭代,对于我们正在讨论的问题,属于已知x求y的类型,即

假设已经获取一个近似解y1,则可以通过一次迭代求取更优解y2:

神奇的是计算y2仅需要乘法和减法运算,于是有如下代码:
y = y * (1.5 - halfx * y * y);   // 一次牛顿迭代
该行代码返回优化后的平方根倒数,也就是最终运算结果。
性能测试
接下来我会在STM32G071上测试Fast Inverse Square Root算法与<math.h>中提供的double sqrt(double)算法的性能,并尝试以此证明它为何被尊为经典。STM32G071运行在64MHz下,编译器和调试器优化分别为-O0和-g3。
使用uint32_t替代long型:
float FInvSqrtRoot(float x)

{

    uint32_t i = 0;

    float y, halfx;

    halfx = 0.5 * x;

    i = *(uint32_t*) &x;             // 按照整型方法操作浮点数

    i = 0x5f3759df - (i >> 1);       // 施放魔法

    y = *(float*) &i;                // 获得平方根倒数近似值

    y = y * (1.5 - halfx * y * y);   // 一次牛顿迭代

    return y;

}
因为STM32G071的RAM大小为36KB,先构造了8000个float数据的数组,大小为32KB;构造方法如下:
float test_data[8000] ={ 0 };

for (uint16_t i = 0; i < 8000; i++)

  test_data[i] = i * 1000 + (float)i / 1000;
使用两种不同算法处理上述8000个数据,测试代码如下(注意此处仅作演示,测试方法不一定严谨):
//平方根倒数速算法

printf("FISR Test Start!\r\n");

ticks = 0;//定时器计数,1ms/tick

HAL_TIM_Base_Start_IT(&htim1);

for (uint16_t i = 0; i < 8000; i++)

  sroot=FInvSqrtRoot(test_data[i]);

HAL_TIM_Base_Stop_IT(&htim1);

printf("FISR Test Stop!\r\n");

printf("FISR Time Elapsed:%f\r\n", ((float) ticks) / 1000);



//传统1/sqrt()

printf("SQRT Test Start!\r\n");

ticks = 0;

HAL_TIM_Base_Start_IT(&htim1);

for (uint16_t i = 0; i < 8000; i++)

  sroot=1 / sqrt(test_data[i]);

HAL_TIM_Base_Stop_IT(&htim1);

printf("SQRT Test Stop!\r\n");

printf("SQRT Time Elapsed:%f\r\n", ((float) ticks) / 1000);
在上述测试环境下,FInvSqrtRoot耗时181ms,1 / sqrt()耗时325ms,FInvSqrtRoot比1 / sqrt()快大约79%。由于sroot是float型,sqrt()返回double型,所以1 / sqrt()测试时有额外的类型转换损耗;将sroot更改为double型,则类型转换损耗由FInvSqrtRoot承担;该状态下,FInvSqrtRoot耗时187ms,1 / sqrt()耗时315ms,FInvSqrtRoot比1 / sqrt()快大约68%。注意FInvSqrtRoot求取的仅是平方根倒数的近似值,和1 / sqrt()比对,误差约在1%以内。
 
魔改:平方根速算法
根据上述原理,可将平方根倒数速算法修改为平方根速算法,代码如下:
float FSqrtRoot(float x) {

    uint32_t i = 0;

    float y;

    i = *(uint32_t *) &x;            // 按照整型方法操作浮点数

    i = 0x1fbd1df5 + (i >> 1);       // 施放魔法

    y = *(float *) &i;               // 获得平方根近似值

    y = 0.5 * (y + x / y);           // 一次牛顿迭代

    return y;

}
在上述测试环境下,FSqrtRoot耗时109ms,sqrt()耗时221ms,FInvSqrtRoot比sqrt()快大约100%。由于sroot是float型,sqrt()返回double型,所以sqrt()测试时有额外的类型转换损耗;将sroot更改为double型,则类型转换损耗由FSqrtRoot承担;该状态下,FSqrtRoot耗时115ms,sqrt()耗时208ms,FInvSqrtRoot比sqrt()快大约80%。

以上代码仅作原理演示用,已通过附件分享 

  FISR.zip  (474 Bytes) 
感兴趣的朋友可自行推导实验,算法性能也请根据实际需求比对。
---------------------
作者:Litthins
链接:https://bbs.21ic.com/icview-3160046-1-1.html
来源:21ic.com
此文章已获得原创/原创奖标签,著作权归21ic所有,任何人未经允许禁止转载。

 

 

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值