机器学习
文章平均质量分 91
icamera0
微信公众号:平凡程式人生。关注机器学习、OpenCL、OpenCV、图像处理、android camera、传统文化等方面。欢迎交流。
展开
-
写程序学ML:K近邻(KNN)算法原理及实现(二)
K近邻算法是分类数据最简单最有效的算法,这里通过三个例子讲述了如何使用K近邻算法构造分类器。K近邻算法是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。K近邻算法必须保存全部数据集,如果训练数据集很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。原创 2017-09-14 08:02:59 · 8245 阅读 · 0 评论 -
写程序学ML:Logistic回归算法原理及实现(三)
利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集。此处的回归公式例如sigmoid函数、reLU函数等。找到最佳的分类回归系数,建立这些函数后,然后利用函数对新的样本数据进行分类。原创 2017-10-25 08:27:45 · 2787 阅读 · 0 评论 -
写程序学ML:Logistic回归算法原理及实现(一)
利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集。此处的回归公式例如sigmoid函数、reLU函数等。找到最佳的分类回归系数,建立这些函数后,然后利用函数对新的样本数据进行分类。原创 2017-10-25 08:04:15 · 4681 阅读 · 0 评论 -
写程序学ML:朴素贝叶斯算法原理及实现(三)
对于分类而言,使用概率有时要比使用硬规则更为有效。贝叶斯概率及贝叶斯准则提供了一种利用已知值来估计未知概率的有效方法。原创 2017-10-01 21:39:00 · 2899 阅读 · 0 评论 -
写程序学ML:朴素贝叶斯算法原理及实现(二)
按照朴素贝叶斯算法的原理,我们需要实现一个朴素贝叶斯分类器。首先,需要使用文本样例对贝叶斯分类器进行训练。原创 2017-10-01 21:31:12 · 2619 阅读 · 1 评论 -
写程序学ML:朴素贝叶斯算法原理及实现(一)
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。原创 2017-10-01 21:26:58 · 3724 阅读 · 0 评论 -
写程序学ML:K近邻(KNN)算法原理及实现(一)
K近邻(k-NearestNeighbor,KNN)算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。原创 2017-09-13 07:38:30 · 4508 阅读 · 1 评论 -
写程序学ML:决策树算法原理及实现(四)
决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。原创 2017-09-24 19:23:38 · 2573 阅读 · 0 评论 -
写程序学ML:决策树算法原理及实现(三)
决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。原创 2017-09-24 19:16:19 · 2479 阅读 · 0 评论 -
写程序学ML:决策树算法原理及实现(二)
决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。原创 2017-09-24 19:03:16 · 2564 阅读 · 0 评论 -
写程序学ML:决策树算法原理及实现(一)
决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。原创 2017-09-24 17:52:15 · 3487 阅读 · 0 评论 -
写程序学ML:Logistic回归算法原理及实现(二)
利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集。此处的回归公式例如sigmoid函数、reLU函数等。找到最佳的分类回归系数,建立这些函数后,然后利用函数对新的样本数据进行分类。原创 2017-10-25 08:14:03 · 2733 阅读 · 0 评论