- 博客(20)
- 资源 (1)
- 收藏
- 关注
原创 Win7+VS2010+OpenCV2.3配置
操作系统:Windows 7 x86 中文旗舰版编译环境:Visual Studio 2010 中文旗舰版OpenCV版本:OpenCV-2.3.0-win1、下载OpenCV(必须要superpack.exe)http://www.opencv.org.cn/download/OpenCV-2.3.0-win-superpack.exe2、安装解压到D盘根
2011-09-06 21:41:33 3336 4
原创 Matlab一种简便的随机数生成
需求:某一文件下有未知数量的图像,随机取一定数量作为训练集,在剩余图像中再随机取一定数量作为测试集。方法: 1、利用dir得到某路径下得文件详细信息,可以通过*.jpg过滤出图像文件。 2、利用randperm生成1:nTo
2011-08-20 20:49:55 664
原创 SIFT参考资料
虽然最近没有研究关于SIFT的内容,但是还是想把一些有关的参考资料放在这里。 [1] David G. Lowe. Object recognition from local scale-invariant features. ICCV1999. [2] David G. Lowe. Distinctive image features from scale-invariant keyp
2011-07-29 02:33:41 998
原创 浅谈PCA(3)
主要谈谈PCA的假设条件和缺点。 PCA有以下几个假设条件: (1)线性(Linearity):基变换的条件,即新得到的正交基可以由之间基的线性组合得到。目前有研究将这个条件转换到非线性条件下,例如Kernel PCA。 (2)大方差对应重要数据结构(Large variances have important structur
2011-06-30 10:52:00 1915 2
原创 浅谈PCA(2)
首先,抛开一切已有说法,用我自己的话说一遍,可能稍显寒碜。 PCA的主要目的是降维,这里涉及到几个问题:什么是降维?降维的标准是什么?怎样实现降维? 下面依次从这三个问题入手讨论。 (1)什么是降维? 这里维度的概念就不解释了。可以简单地将降维理解为:数据的维度越大,对于计算就越复杂,需要将高维数据表示在低维上
2011-06-29 16:27:00 1669 1
原创 浅谈PCA(1)
作为开始,给出一些参考资料以便参考。为了方便阅读,这些资料都是能在网上看到或者下载到的。 [1] Lindsay I Smith. A tutorial on Principal Components Analysis. February 26, 2002. http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_compo
2011-06-24 10:03:00 979 1
原创 C/C++ tricks (1)
1、在VS2005中(可能之后的版本也是如此,没有具体考证),BOOL和bool是有区别的,BOOL的定义是“typedef int BOOL;”并非0或1了,虽然是个小问题,但也让我绕了不少弯。2、单选按钮操作小技巧: (1)组合。将Tab顺序中最小的一个按钮的Group属性设置为True,其他均为False,则这些按钮就自动成为了一组。一组中的单选按钮只能选中一个,它们之间是互斥的。 (2)查找被选中的单选按钮。如果需要查找一组数量庞大的单选按钮中哪一个被选中,只需将Tab顺
2011-03-16 17:20:00 514
原创 Matlab GUI程序转换为EXE可执行程序
<br /> 用Matlab写了一个GUI程序,需要在没有Matlab环境的机器上运行,以前用过,但是今天又搞忘记了,查了一下,顺便把过程记录下来。<br /> Matlab版本:2010b<br /> 操作系统:Windows XP<br /> 操作流程:<br /> 假定已经写好的程序包括gui.m和gui.fig两个文件(用guide命令进入gui编程界面)<br /> 1、mbuild -setup,根据提示完成选择,我采用的是
2011-01-15 15:41:00 1231
原创 Mean Shift基础知识
Mean Shift在几年前大火,但是目前好像退温了。有的中文译为均值漂移,有的译为均值偏移,我还是坚持我的作风,不译。(有很多东西看了都忘记了,写在这里需要的时候复习,^_^) 给定d维空间中的n个样本点,i=1,…,n,在点的Mean Shift向量的基本形
2010-12-09 10:03:00 1270
原创 PF备忘录
PF(Particle Filter,粒子滤波)是大家用得很多的一种方法,我接触的主要是用来做目标跟踪的。PF也叫做顺序蒙特卡罗方法(Sequential Monte Carlo Methods),它主要是提供了一种方便而有效的从非高斯、非线性、高维的观测数据中计算后验概率的方法。对线性高斯系统可以采用KF,而非线性高斯可以采用EKF和UKF,而非线性非高斯则可以采用PF。 PF的主要步骤为: 1、初始化:从初始分布得到初始采样集合(比如均匀分布),并令所有样本的权值
2010-12-08 09:56:00 573
原创 UKF备忘录
可能是由于复杂一些了吧,好像使用UKF的人不是很多。 EKF虽然应用于非线性状态估计系统中已经得到了学术界认可并为人广泛使用,然而该种方法也带来了两个缺点:(1)当强非线性时EKF违背局部线性假设,Taylor展开式中被忽略的高阶项带来大的误差时,EKF算法可能会使滤波发散;(2)由于EKF在线性化处理时需要用雅克比(Jacobian)矩阵,其繁琐的计算过程导致该方法实现相对困难。所以,在满足线性系统、高斯白噪声、所有随机变量服从高斯(Gaussian)分布这3个假设条件时,EKF
2010-12-07 09:58:00 1924 1
原创 EKF备忘录
其实EKF都没有用过,不过既然看过,还是备忘在这里吧。 回忆一下KF,我们会发现它处理的是线性问题,即是状态方程和观测方程为线性的问题。如果是非线性呢,那么EKF(Extended Kalman Filter)就是处理这种问题的方法之一。EKF仿效泰勒级数展开,在当前估计值处对过程或测量方程求偏导,从而将非线性问题线性化。 同KF一样,我们需要知道2个预设方程(均为非线性): 实际中我们显然不知道每一时刻状态噪声和观测噪声
2010-12-06 14:22:00 829 2
原创 KF备忘录
最近突然想起来把以前接触过的东西在这里做一个备忘录,也不花时间,基本上点到为止。 Kalman Filter于1960年被R. E. Kalman提出来,简单地说是一个最优化自回归数据处理算法。 要理解KF,只需要理解2个预设方程和5个核心公式,分别如下: 2个方程(状态方程、观测方程): 5个核心公式(先验估计、先验估计误差协方差、卡尔曼增益、后验估计、后验估计误差协方差):
2010-12-05 21:48:00 843
原创 生成模型(Generative Model)Vs 判别模型(Discriminative Model)
看HMM的是很看到了生成模型,于是提出了一个问题,什么是生成模型?查了一下资料,总算大致了解了,把内容贴在这里,以备翻阅。 判别模型(Discriminative Model),又可以称为条件模型,或条件概率模型。估计的是条件概率分布(conditional distribution),p(class|context)。利用正负例和分类标签,主要关心判别模型的边缘分布。其目标函数直接对应于分类准确率。 主要特点:寻找不同类别之间的最优分类面,反映的是异类数据之间的差异
2010-12-04 18:55:00 3827
原创 SIFT的一些细节问题(三)
其实以下问题不一定要归结到SIFT的内容当中来,因为这是关于特征点匹配方面的,只是由于我是在看SIFT的时候接触到这些,并且也只是有一点粗浅的了解,将一些基础的总结性的知识储备在这里吧。不能算问题,只能是知识点。 1、特征匹配算法分类。通常特征匹配算法可以分为两类。一类是线性扫描法,即穷举法。第二类是建立数据索引,然后再进行快速匹配。索引树就是第二类中的一种,其基本思想是对搜索空间进行层次划分。根据划分的空间是否有混叠(Overlap)可以分为Clipping和Overlappin
2010-12-03 11:03:00 1075
原创 采用EM估计GMM的参数
通常采用EM对GMM参数进行估计。EM(期望值最大,Expectation Maximum)算法思想比较简单,主要分为两个步骤,估计步骤E-step和最大化步骤M-step。首先利用样本对参数进行估计,然后在M-step中将需要估计的参数最大化(通常是求其最大似然估计),不断地迭代此两个步骤,直到收敛。 下面写一下采用EM估计GMM的步骤: 1、初始值确定。 方案1:将协方差矩阵设为单位矩阵,每个模型的先验概率设为1/M,均值设为随机数,即:
2010-12-02 13:27:00 2587 1
原创 GMM基础介绍
好像前两天听说老师要讨论讨论GMM及其用法、证明等等,于是还是回顾了一下GMM的一些基本的知识,也备注在这里吧。 注:以下的话可能非正式,完全是帮助自己理解的口水话,不一定严谨。 最开始看到GMM的时候是在运动目标检测的背景建模过程中,采用GMM对背景建模并且进行更新。所谓高斯混合模型(GMM),就是利用多个高斯模型叠加成为一个新的模型,这种方法在单高斯模型(SGM)无法处理的情况下是非常有效地。比如说有一堆样本数据,在二维平面上并不是呈现一个椭圆形,那么用SGM去建
2010-12-01 18:59:00 2117
原创 SIFT的一些细节问题(二)
接着上次的说,主要是计算特征点方向和生成SIFT特征向量的过程中的一些问题。直接切入正题吧。 1、计算特征点方向时的参数问题。计算特征点的方向时,将邻域内的梯度和方向进行统计,并以1.5倍sigma(sigma为该特征点的尺度值)进行圆形高斯加权,生成36个bin的梯度方向直方图,但是这个邻域是多大呢?在Lowe的原文中并没有明确说明,而在王永明的《图像局部不变性特征与描述》一书中说明邻域半径为3倍sigma。这个嘛,在没有进一步看到更多的说明之前,还是认为是3倍sigma吧
2010-11-30 11:51:00 1151 2
原创 SIFT的一些细节问题(一)
SIFT已经流行得近乎泛滥,大概在3、4年前看到SIFT时,大部分还是应用在宽基线图像匹配方面,其他方面的文章还不多,当时大概只查到几篇在目标跟踪方面应用的文章,但是都很浅显,没有什么改进,并且都是一些影响力不高的会议文章。当时心里闪过了一些念头,能不能在其他方面做一些应用,甚至对特征本身做一些改进?但是由于当时没有花很多时间在这方面的研究上,这个想法也就被搁置了。但是如今回过头来一看,局势完全不同了,SIFT像阿凡达风靡中国一样席卷图像处理各个领域,即使有些地方用上去显得有些生硬。从另一个角度
2010-11-29 19:51:00 1720
原创 HMM的一些细节问题
这段时间老师让大家讨论一下HMM,希望大家对这些基础理论有一些了解,刚好准备在这里写一点自己的东西,那就从这个HMM开始吧。 以前在很多论文上都看到过利用HMM来解决一些实际问题,虽然这些在很大程度上都只是为了给文章增加一个光环,我自己却很少关注HMM的基础理论,最近认真看了一下,也算响应老师的号召,同时给自己增加一些理论积累。在这里不会写太多,因为可以看的HMM得资料很多,而且讲得很详细。为了完整性,我还是大概写一下我对HMM整个过程的理解。 HMM本身是一个生成模
2010-11-28 23:19:00 1238 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人