Stable Diffusion教程|练丹师是如何炼丹的Lora模型训练

前言:

在本系列教程中,我们将揭秘练丹师的神秘技艺,带你深入了解Stable Diffusion中的Lora模型训练。从基础知识到实战操作,一步步教你如何炼制出属于自己的图像生成丹药。准备好了吗?让我们一起踏上成为高级练丹师的修炼之路!

目录

1 炼丹介绍

2 环境准备

3 Lora模型训练

**一、**炼丹介绍

什么是炼丹?

早在学习SD地第一篇就普及过炼丹师的概念,炼丹师就是指那些专门研究、开发与应用Stable Diffusion模型的专业人士或爱好者,他们在实践中不断优化模型,使其产生更高质量、更具创意的图像。

炼丹种类

在用SD进行AI绘画时,常用的模型我们都可以自行训练:

1大模型,也就是底模和主模型,文件后缀.safetensors ,文件大小2G~7G左右,耗费时间最长,图片最多,算力最多,也是最有效的一种,没有底模根本无法生成图片。
这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

2 embedding模型,文件后缀.pt或.safetensors, 文件大小20KB~300KB,训练简单效果一般,通常用于负面提示词应用,一个embedding相当你输入了一类负面的prompt提示词。

3 Lora模型,就是我们今天要学习的,文件后缀一般是.safetensors,(格式可以互转) 文件大小比embedding大比大模型小,几十MB~几百MB,训练相对容易,现在有了集成安装包就更简单了,硬件要求8G显存以上的卡就可以满足了。

二、环境准备

下载丹炉

目前最简单傻瓜式的就是下载国内B站@秋葉aaaki提供的集成安装包,下载即可用。

下载地址:

百度盘:https://pan.baidu.com/s/1TBaoLkdJVjk_gPpqbUzZFw 夸克盘:https://pan.quark.cn/s/b4ccd1f635b6

提取码:关注公众号发信息"下载丹炉"获取。

安装环境

1 一键更新

2 安装python

检测win电脑里面的python版本在3.10以上就不用重复安装。

setp1 搜索cmd,打开命令窗口

setp2 输入python 查看版本(需要确定你的python环境变量正确配置,才能用)

没有安装python的或者版本升级的如下:

下载python:

地址:https://www.python.org/downloads/

安装python:

记得勾选:add python.exe to PATH 。自动配置环境变量。

一路下一步傻瓜安装完成即可。

手动配置环境变量:

右键“此电脑”,点击属性,进入设置界面:

三、Lora模型训练

准备图片素材

要求:8G左右的显卡同学,准备512*512的图片素材即可,更牛显卡的不建议超过1024*1024,找同一类风格图片或者同一个人物的不同角度不同姿态的图片。

批量裁剪:如果你从网上找图片,尺寸不一样,可以通过SD WEB UI批量裁剪(当然其他图片处理软件批处理也可以做到,比如PS-动作功能、美图秀秀批处理功能等)

setp1 打开SD WEB UI,附件功能-从目录进行批量处理

setp2 输入图片目录 和 输出目录,路径不要有中文字符。

setp3 图像放大,指定分辨率512*512

setp4 创建镜像,横向or纵向,这样可以多出来一倍的训练图片。

setp5 自动焦点剪切,识别主题的位置剪切。

手动剪裁:素材是最关键的环节,如果你对批量剪裁不满意,可以手动为每张图片剪裁。我这里是B站找了一个网友自制小工具蛮好用的,推荐大家:

https://www.bilibili.com/video/BV18j411F77F/?vd_source=5e6959feb6ee2c4f9ec536f84751edea

图片打标

图片剪裁完成后,需要对每个图片进行打标,告诉计算机你这图里都有什么元素。

自动打标:

启动丹炉,双击“A启动脚本.bat”。

输入图片地址,启动即可。

打完后,看看图片文件夹,每个图片都多了一个txt文件:

手动修改tag:

最好自己检查下每个txt文件,里面的标签是否准确,对不满意的prompt,自行手动修改即可。

注意:不能有空的txt文件,按文件大小倒序找到这些文件,手动填写prompt即可。

丹炉配置

1、启动丹炉,双击“A启动脚本.bat”

2、选择你的底模,可以从你之前SD web UI里面去找,这里网上很多,不同底模适合不同类型的模型训练。我这里要训练纸片人风格的,用了“AnythingXL_v50.safetensors ”,注意不要有中文路径。然后设置分辨率和丹的名称。

3、选择刚才准备的图片素材,路径需要设置下,放在这个目录里:

…/train/XXX/8_XXX

XXX- 本次训练的项目名称自取英文即可,文件结构按这个来就行。

4、一切准备就绪,启动训练,交给时间吧@-@等着炼丹训练完成。祝你好运!

模型测试

把练好的模型,放在SD WEB UI测试你的模型吧!!

这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用 Stable DiffusionLoRA 进行局部重绘训练 #### 准备工作 为了使用 Stable Diffusion 结合 LoRA 模型进行局部重绘训练,需先准备好基础环境和资源。确保安装并配置好 Stable Diffusion 的运行环境,并下载所需的预训练模型文件。 对于特定需求提到的 `RevAnimated_v122.safetensors` 作为基底模型以及两个 LoRA 文件——IvoryGoldAI (增加金属质感) 和 more_details (增强图像细节)[^1],这些都将用于微调过程中的风格调整。 #### 数据集准备 创建一个专门的数据集,其中包含需要重新绘制部分的目标图片及其对应的掩码(mask),该掩码用来指示哪些区域应该被修改。每张图与其对应mask应成对存在,以便于后续处理脚本读取。 #### 配置参数与命令执行 在启动训练之前,定义必要的超参数如 batch size, learning rate 等。同时,在命令行中指定加载的基础模型路径、LoRA权重位置以及其他必要选项: ```bash python train.py \ --base_model_path ./models/revanimated_v122.safetensors \ --lora_weights "./loras/IvoryGoldAI.lora", "./loras/more_details.lora" \ --data_dir /path/to/dataset \ --output_dir output_directory_name \ --learning_rate=5e-6 \ --max_train_steps=800 ``` 此段代码展示了如何通过 Python 脚本来发起一次基于给定条件下的训练任务[^2]。 #### 应用负向提示优化结果质量 为了避免某些不希望出现的效果,可以在训练过程中加入负面提示(negative prompt)。例如利用 badhandv4 或 EasyNegativeV2 来防止手部变形等问题的发生;而 Deep Negative 则有助于改善人体结构准确性等方面的表现[^3]。 #### 实践建议 理论知识固然重要,但实践才是检验真理的标准。鼓励读者跟随具体项目操作一遍完整的流程,这样不仅能加深理解还能积累宝贵经验[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值