[线性DP] 洛谷P1508 Likecloud-吃、吃、吃(多阶段决策)

题目

LP1508

思路

紫书例题单向TSP翻版,甚至还更简单。

启示

oi不能瞧不起简单题。
一上场,一看普及/提高-,一看是单向TSP翻版,就想这水题我十分钟秒。。然后拖了一个小时。。
总之OI作为一项高技术难度的活动,即便是很简单的题,也应该有足够的思考和谨慎,再简单的题,像边界处理,小数精度,负数下标访问,字符串这些零零碎碎的东西也会直接让代码WA或者RE。有句话叫,当你认为对手很弱的时候你就已经输了,其实放在这里很合适,纵然一道题很简单,一个小错误也能让你送了命。

代码

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define _for(i,a,b) for(int i = (a); i<(b); i++)
#define _rep(i,a,b) for(int i = (a); i<=(b); i++)
using namespace std;

const int INF = 1000000000;
const int maxn = 200 + 20;
int n, m, t[maxn][maxn], w[maxn][maxn], d[maxn][maxn];

int main() {
    scanf("%d%d", &n, &m);
    _rep(i, 1, n)
        _rep(j, 1, m)
        scanf("%d", &t[i][j]);
    _rep(i, 1, n)
        _rep(j, 1, m)
        w[i][j] = t[n - i + 1][j];

    _rep(i, 1, m) d[0][i] = -INF;
    d[0][m/2+1] = 0;
    _rep(i, 1, n)
        _rep(j, 1, m) {
        d[i][j] = d[i - 1][j];
        if (j < m) d[i][j] = max(d[i][j], d[i - 1][j + 1]);
        if (j > 1) d[i][j] = max(d[i][j], d[i - 1][j - 1]);
        d[i][j] += w[i][j];
        if (d[i][j] < -INF) d[i][j] = -INF;
    }

    int ans = -INF;
    _rep(i, 1, m)
        ans = max(ans, d[n][i]);
    printf("%d\n", ans);

    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Eigen-values(特征值)是线性系统分析中的一个重要概念,它可以用来描述系统的稳定性和响应特性。Eigen-values的计算可以通过求解系统的特征方程来完成,而特征方程的求解可以使用线性代数中的特征值和特征向量来实现。在这里,我们将介绍如何使用Eigen-values程序来进行线性系统分析。 首先,需要安装Eigen-values程序包。该程序包是一个免费的开源软件,在网上可以找到下载链接。安装完成后,可以使用以下命令在C++代码中包含Eigen-values库: ``` #include <eigenvalues/eigenvalues.h> ``` 接下来,需要定义一个矩阵表示线性系统的状态空间模型。例如,假设我们有以下状态空间模型: ``` x_dot = Ax + Bu y = Cx + Du ``` 其中,A、B、C和D是系统矩阵,x是状态向量,u是输入向量,y是输出向量。我们可以使用Eigen-values程序中的Matrix类来定义这些矩阵: ``` Eigen::MatrixXd A(n, n); Eigen::MatrixXd B(n, m); Eigen::MatrixXd C(p, n); Eigen::MatrixXd D(p, m); ``` 其中,n是状态向量的维数,m是输入向量的维数,p是输出向量的维数。接下来,我们需要将A、B、C和D矩阵填充为实际的数值。例如,假设我们有一个2维状态向量、1维输入向量和1维输出向量的系统,可以使用以下代码来填充矩阵: ``` A << 0, 1, -1, -2; B << 0, 1; C << 1, 0; D << 0; ``` 现在,我们可以使用Eigen-values程序中的eig()函数来计算该系统的特征值。该函数将返回一个包含系统特征值的向量: ``` Eigen::VectorXcd eigenvalues = eig(A); ``` 在这里,我们使用了复数向量(VectorXcd)来存储特征值,因为线性系统的特征值可能是复数。如果所有特征值的实部都小于零,则系统是稳定的。如果存在一个或多个特征值的实部大于或等于零,则系统是不稳定的。 除了特征值,我们还可以使用Eigen-values程序来计算系统的特征向量。特征向量是满足以下方程的向量: ``` Av = λv ``` 其中,λ是特征值,v是特征向量。特征向量描述了线性系统在特征值对应的方向上的响应特性。例如,如果系统的特征值是实数,则特征向量可以表示系统的振荡模式。如果系统的特征值是复数,则特征向量可以表示系统的旋转模式。可以使用以下代码来计算系统的特征向量: ``` Eigen::EigenSolver<Eigen::MatrixXd> solver(A); Eigen::MatrixXcd eigenvectors = solver.eigenvectors(); ``` 在这里,我们使用Eigenvalues程序中的EigenSolver类来计算系统的特征向量。该类将返回一个包含特征向量的矩阵。由于特征向量可能是复数,因此我们使用复数矩阵(MatrixXcd)来存储它们。 使用Eigen-values程序进行线性系统分析时,需要注意以下几点: 1. 系统的状态空间模型必须是已知的。 2. 系统必须是线性的。 3. 系统必须是时不变的。 4. 系统必须是有限维的。 如果满足上述条件,则可以使用Eigen-values程序来计算系统的特征值和特征向量,以进行稳定性和响应分析。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值