题目地址:
https://www.luogu.com.cn/problem/P1508
题目背景:
问世间,青春期为何物?答曰:“甲亢,甲亢,再甲亢;挨饿,挨饿,再挨饿!”
题目描述:
正处在某一特定时期之中的李大水牛由于消化系统比较发达,最近一直处在饥饿的状态中。某日上课,正当他饿得头昏眼花之时,眼前突然闪现出了一个
n
×
m
(
n
,
m
≤
200
)
n \times m(n,m \le 200)
n×m(n,m≤200)的矩型的巨型大餐桌,而自己正处在这个大餐桌的一侧的中点下边。餐桌被划分为了
n
×
m
n \times m
n×m个小方格,每一个方格中都有一个圆形的巨型大餐盘,上面盛满了令李大水牛朝思暮想的食物。李大水牛已将餐桌上所有的食物按其所能提供的能量打了分(有些是负的,因为吃了要拉肚子),他决定从自己所处的位置吃到餐桌的另一侧,但他吃东西有一个习惯——只吃自己前方或左前方或右前方的盘中的食物。由于李大水牛已饿得不想动脑了,而他又想获得最大的能量,因此,他将这个问题交给了你。每组数据的出发点都是最后一行的中间位置的下方!
输入格式:
第一行为
m
m
m和
n
n
n(
n
n
n为奇数),李大水牛一开始在最后一行的中间的下方。接下来为
m
×
n
m\times n
m×n的数字距阵。共有
m
m
m行,每行
n
n
n个数字.数字间用空格隔开.代表该格子上的盘中的食物所能提供的能量。数字全是整数.
输出格式:
一个数,为你所找出的最大能量值。
可以用记忆化搜索。代码如下:
#include <iostream>
using namespace std;
const int N = 210, INF = 1e9;
int n, m;
int a[N][N], f[N][N];
int dfs(int x, int y) {
if (f[x][y] > -INF && x != m + 1) return f[x][y];
if (x == 1) return f[x][y] = a[x][y];
for (int dy = -1; dy <= 1; dy++) {
int ny = y + dy;
if (1 <= ny && ny <= n)
f[x][y] = max(f[x][y], a[x][y] + dfs(x - 1, ny));
}
return f[x][y];
}
int main() {
scanf("%d%d", &m, &n);
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++) {
scanf("%d", &a[i][j]);
f[i][j] = -INF;
}
printf("%d\n", dfs(m + 1, n / 2 + 1));
}
时空复杂度 O ( m n ) O(mn) O(mn)。