[堆] 洛谷P3378 二叉堆模板

题目

如题,初始小根堆为空,我们需要支持以下3种操作:
操作1: 1 x 表示将x插入到堆中
操作2: 2 输出该小根堆内的最小数
操作3: 3 删除该小根堆内的最小数

二叉堆

支持两种操作

1.往一个集合加一个数。
2.从集合中删去一个优先值最大的元素。

规则

每个结点比儿子优先级大。
插入规则:先插入到最后一个结点,然后不停与父节点交换,直到到了根节点或者比父节点大。
删除根并返回规则:(只能删除根)先记录根、,然后把最后一个结点放到根的地方,然后不停地反方向交换,也就是将挪过来的结点与左右儿子比较,找到比较小的一个,与其交换,直到到了叶子结点或者比左右儿子都小。

复杂度分析

(1).层数:logn
(2).插入或删除:至多logn
单次操作:O(logn)

例题:合并果子 (原理是哈夫曼树)

每个果子的代价:重量*在树中深度
考虑这样构造出来的树,深度越深的结点权值越小,从而达到最小权值。

代码

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <cstring>
#define _for(i,a,b) for(int i = a; i<b; i++)
#define _rep(i,a,b) for(int i = a; i<=b; i++)
using namespace std;

const int maxn = 1000000+10;
int n, t[maxn], cc;

void add(int x){
    t[++cc] = x;   // 根节点用1表示,是为了方便表示没有结点0 
    int now = cc, fa = cc/2;
    while(fa && x < t[fa]){
        swap(t[now], t[fa]);
        now = fa;
        fa /= 2;
    }
}

int out(){
    printf("%d\n", t[1]);
}

void del(){
    t[1] = t[cc];
    cc--;
    int now = 1, nxt = 2;
    if (nxt < cc && t[nxt] > t[nxt+1]) nxt++;
    while(nxt <= cc && t[now] > t[nxt]){
        swap(t[now],t[nxt]);
        now = nxt;
        nxt *= 2;
        if (nxt < cc && t[nxt] > t[nxt+1]) nxt++;
    }
}

int main(){
    scanf("%d",&n);
    while(n--){
        int a,x;
        scanf("%d",&a);
        if(a == 1){
            scanf("%d",&x);
            add(x);
        } else if (a == 2){
            out();
        } else {
            del();
        }
    }


    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值