0.1在计算机中不能被精确表示(浮点数的陷阱其实也是二进制下的陷阱?)

计算机中0.1无法用有限的二进制小数表示,导致它实际上是无限循环的近似值。通过0.25和0.24的测试,揭示了二进制在表示特定十进制数时的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<stdio.h>
#include<iostream>
int main()
{
	double i;
	/*
	for (i=0; i != 10;i+=0.1)
	{
		printf("%.1lf\n",i);//这样写停不下来无限循环
	}
	*/
	/*
	for (i=0;i-10<0.00000001;i+=0.1)
	{
		printf("% .1lf\n",i);//这样写是可以停下来的。
		//****因为内存中的小数是不稳定的,不能直接比较大小,只能是认为相减的差接近于0的时候是相等的
	}
	*/
	for(i=0; (int) i!=10.0; i += 0.1) //double强转int 之后小数点去掉i=10.000XXX...  X是可能出错的位 (int)i=10  10就=10.0 就停下来了
	{
		printf("% .1lf\n",i);//这样写是可以停下来的。
	}
	system("pause");
	return 0;
}

//这个问题是在书上看到的~然后百度了一下发现了原因……

0.1 = 1/(2^4) + 1/(2^5) + 1/(2^8) + ...

其中0.1只能无限循环下去,这就意味着0.1在计算机中不能被精确表示

---------------------------cur

在编程中使用IEEE 754标准的浮点数可能会遇到精度问题,这是因为IEEE 754标准在表示实数时采用了二进制浮点数表示法,这种方式虽然能够覆盖一个非常宽的数值范围,但是在对某些小数进行近似表示时会出现舍入误差。这是因为某些十进制的小数在转换为二进制表示时会出现无限循环小数,例如十进制的0.1二进制表示为一个无限循环小数,必须截断为有限位数才能在计算机中存储,从而导致精度损失。 参考资源链接:[计算机科学家必知:David Goldberg论浮点运算设计](https://wenku.csdn.net/doc/2bfdvq20dp?spm=1055.2569.3001.10343) 为了有效管理这些问题,程序员可以采取多种策略: 1. 当涉及到货币计算时,使用定点数表示法替代浮点数,因为定点数可以精确表示小数点后的位数。 2. 在需要高精度计算的情况下,可以使用多倍精度(Multiple-Precision)浮点库,如GMP(GNU Multiple Precision Arithmetic Library)或MPFR(Multiple Precision Floating-Point Reliable Library)。 3. 在进行浮点数比较时,设置一个很小的阈值(epsilon),只有当两个浮点数的差值小于这个阈值时,才认为这两个数是相等的。 4. 尽量避免在浮点数运算中混合使用不同精度的数值类型,这样可以减少由精度转换导致的误差。 5. 利用编程语言提供的特定功能,如Python中的decimal模块,允许用户定义精度并控制舍入行为。 理解IEEE 754标准以及浮点数的精度问题是避免在编程中出现不可预期错误的关键。推荐阅读《计算机科学家必知:David Goldberg论浮点运算设计》一文,该文详细介绍了浮点数表示方式、IEEE标准以及常见的陷阱,并提供了实际的编程实践指导,帮助开发者构建更加健壮和精确计算机系统。 参考资源链接:[计算机科学家必知:David Goldberg论浮点运算设计](https://wenku.csdn.net/doc/2bfdvq20dp?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值