HDU-1806 Frequent values(RMQ)

1 篇文章 0 订阅

题目链接

HDU-1806 Frequent values

题目大意

给定一个长度为 n(1n100000) 非减序列,有 q(1q100000) 次查询,每次查询 [l,r] 内出现次数最多的数字出现了多少次?

Sample Input

10 3
-1 -1 1 1 1 1 3 10 10 10
2 3
1 10
5 10
0

Sample Output

1
4
3

思路

首从序号 1ii 个数出现的次数,然后通过 RMQ 查询即可,注意查询时,要分类讨论即可。

代码

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>

using namespace std;

const int MAXN=200005;

int pre,cur,n,q,tmp,l,r;
int nxt[MAXN];//nxt[i]表示比第i个数字大的第一个数字的序号

struct RMQ {
    int dp[MAXN][19];

    void init() {
        for(int j=1;(1<<j)<=n;++j) {
            for(int i=1;i<=n;++i) {//若第一维只开一倍空间,则此处应用:i+(1<<(j-1))<=n
                dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
            }
        }
    }

    int query(int l,int r) {
        int k=log(r-l+1.0)/log(2.0);
        return max(dp[l][k],dp[r-(1<<k)+1][k]);
    }
}rmq;

int main() {

    while(scanf("%d",&n),n!=0) {
        scanf("%d",&q);
        pre=-0x3f3f3f3f;
        for(int i=1;i<=n;++i) {
            scanf("%d",&cur);
            tmp=(cur==pre?tmp+1:1);
            rmq.dp[i][0]=tmp;
            pre=cur;
        }
        rmq.init();//初始化RMQ
        nxt[n]=n+1;
        for(int i=n-1;i>=1;--i) {//初始化nxt数组
            nxt[i]=(rmq.dp[i][0]+1==rmq.dp[i+1][0]?nxt[i+1]:i+1);
        }

        while(q-->0) {
            scanf("%d%d",&l,&r);
            if(nxt[l]>r) {//查询区间内的数字全部一样
                printf("%d\n",r-l+1);
            }
            else {//输出 下一个数开始的区间的最大值 与 nxt[l]-l 的较大值
                printf("%d\n",max(nxt[l]-l,rmq.query(nxt[l],r)));
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值