HDU1806 Frequent values

非递减序列对于区间中出现最多的值出现次数的询问 用到了游程编码 (a,b)表示有b个连续的a。

把原来的序号转化成自定义的序号 然后RMQ 注意特判左右两边多出来的部分。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
#define M 100005
int num[M],lt[M],rt[M];
int ct[M],d[M][20];
void init(int k)
{
    for(int i=1;i<=k;i++) d[i][0]=ct[i];
    for(int j=1;(1<<j)<=k;j++)
    {
        for(int i=1;i+j-1<=k;++i)
        {
            d[i][j]=max(d[i][j-1],d[i+(1<<(j-1))][j-1]);
        }
    }
}
int rmq(int L,int R)
{
    int k=0;
    while((1<<(k+1))<=(R-L+1))k++;
    return max(d[L][k],d[R-(1<<k)+1][k]);
}
void solve()
{
    int n,q;
    while(scanf("%d",&n))
    {
        memset(num,0,sizeof num);
        memset(lt,0,sizeof lt);
        memset(rt,0,sizeof rt);
        memset(d,0,sizeof d);
        memset(ct,0,sizeof ct);
        if(!n)break;
        scanf("%d",&q);
        int co=1,a,va;
        for(int i=1;i<=n;i++)
        {
           scanf("%d",&a);
            if(i!=1)
            {
                if(a!=va)
                {
                     va=a;
                     rt[co]=i-1;
                      co++;
                     lt[co]=i;
                 }
            }
            else
            {
                lt[co]=1;
                 va=a;
            }
            ct[co]++;
            num[i]=co;
        }
        rt[co]=n;
        init(co);
        for(int i=1;i<=q;i++)
        {
            int l,r;
            scanf("%d%d",&l,&r);
            if(num[l]==num[r]){printf("%d\n",r-l+1);}
            else{
                  if(num[l]+1<=num[r]-1)
                  {
                    printf("%d\n",max(rt[num[l]]-l+1,max(rmq(num[l]+1,num[r]-1),r-lt[num[r]]+1)));
                  }
                  else
                      printf("%d\n",max(rt[num[l]]-l+1,r-lt[num[r]]+1));
               }
        }
        
    }
}
int main()
{
    solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值