- 博客(11)
- 收藏
- 关注
原创 人工智能演义第三回:一脉相承得失公论,两度寒冬冷暖自知
上回书说到以神经网络为代表的联结主义学派,这一回说的是人工智能另一大山头—符号主义学派。符号主义曾长期领衔诸多学派,为人工智能的发展作出巨大贡献,未来,我们不知道哪个派别能够占据统治地位,但这并不重要,重要的是它能为人工智能乃至人力资本行业数字化带来什么贡献。什么是“符号主义”?先举个栗子。△当你看一个房间当我们看到一个房间,可以看到门、沙发、柜子、电灯等物品,人...
2019-11-27 14:39:05 977
原创 深度结合NLP领域最强大模型,赋能人力资本领域算法升级
WHAT'S BERT ?BERT (Bidirectional Encoder Representations from Transformers),是google于2018...
2019-11-26 16:55:22 708
原创 Graph Embedding在人力资本领域的应用
一切皆可Embedding在NLP(自然语言处理)中,自然语言无法直接应用到数学模型的建立中,需要将其映射到欧式空间。Embedding就是解决如何将自然语言表示为向量的,Goo...
2019-11-26 16:49:19 482
原创 基于Bert架构的精准知识表征模型
画像是什么?“画像”的出现,得益于大数据、云计算、人工智能等新技术的飞速发展。用户画像(persona)的概念最早由交互设计之父Alan Cooper提出:“Personas ar...
2019-11-26 16:42:35 1049
原创 人工智能演义第二回:遇险阻创始人早逝,敢坚持三剑客逆袭
神经网络是什么?神经网络是人工智能领域目前最热门的一种机器学习方法,是目前最为火热的研究方向之一——深度学习的基础。神经网络这个概念听起来无比深...
2019-11-26 16:37:12 424
原创 e成科技人岗匹配中的匹配模型
随着网络招聘的发展与壮大,网聘渠道积攒着数亿份个人简历以及上千万份企业招聘信息。如何将这些简历和岗位进行精准匹配是各大招聘平台面临的重大挑战。问题描述在人岗匹配中,JD文档由多句工作描述和岗位要求组成,CV文档主要由求职者的工作经历组成。传统人岗匹配中通过对求职者简历的工作经历文本和JD岗位信息进行文本挖掘,两者的技能和能力是否契合作为判断JD和CV是否匹配的重要依据。早期的人岗匹配版本基于t...
2019-07-23 16:14:50 5953 8
原创 Chat Bot问题相似度演进之路
员工Bot是e成科技一款服务于企业内部员工的机器人助理产品。其中,自动解答员工频繁会问到的业务知识类问题是员工Bot的核心应用场景,借助员工Bot可以显著的减少HR日常重复性工作。 本文主要讨论自然语言处理算法在员工Bot场景下的应用,其核心是短文本(问题)的相似度匹配。这是一个自然语言处理领域成熟的方向,有很多经典方法,但随着近些年来深度学习的进展,效果更好的新方法也在不断涌现。作为一名NLP领...
2019-07-23 15:32:51 508
原创 强化学习在人岗匹配系统中的应用
一、背景介绍人岗匹配系统是e成HR saas 服务的重要组成部分,主要场景是HR创建职位描述(job description,简称jd)后,从人才库或者用户主动投递的简历中通过匹配,排序得到最合适该jd的简历列表(cv list)。人岗匹配的价值在于提高HR search人才的效率,这个场景可以看做用户输入query为jd长文本的搜索引擎,因此排序是这个系统最重要的一环,而基于用户反馈数据的L...
2019-07-23 15:28:38 655
原创 知识图谱在e成科技人才搜索引擎中的应用
背景介绍人才搜索引擎是e成科技企业服务中的重要组成部分,为用户提供人才库搜索服务。e成科技早期的搜索引擎主要依赖于term weight、bm25等传统的信息检索相关技术,在语义匹配方面相对薄弱,而随着e成科技人力资源知识图谱的落地,搜索引擎引入知识图谱相关数据在效果上获得较大提升。知识图谱e成科技的知识图谱主要组成部分是实体(entity)和实体间关系,实体类型主要有职能、技能和行业等, ...
2019-07-23 15:20:11 1151
原创 人力资源知识图谱搭建及应用
背景介绍人力资源行业其实是做关于人的决策的数据密集型行业,其中的传统数据就包括简历、JD、面试评价、绩效等。随着时代和技术的发展,对数据的处理已经从简单人工处理进入到了人工智能技术的应用,而知识图谱则能把这些数据连接起来,挖掘其中更多价值,帮助企业管理层及HR们更明智的做出关于人的决策。什么是知识图谱?在互联网时代,搜索引擎是人们在线获取信息和知识的重要工具。当用户输入一个查询词,搜索引擎会...
2019-07-23 15:15:23 2874
原创 深度学习模型在序列标注任务中的应用
背景序列标注任务是中文自然语言处理(NLP)领域在句子层面中的主要任务,在给定的文本序列上预测序列中需要作出标注的标签。常见的子任务有命名实体识别(NER)、Chunk提取以及词性标注(POS)等。序列标注任务在e成的主要应用有,简历解析时的字段切分、抽取工作经历(CV)和职位描述(JD)中的实体名词等。更具体的任务有,在解析一段工作经历长文本的时候,我们希望提取其中的动宾组合来表示该应聘者之...
2019-07-23 15:05:58 2318
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人