R = mvnrnd(MU,SIGMA)——从均值为MU,协方差为SIGMA的正态分布中抽取n*d的矩阵R(n代表抽取的个数,d代表分布的维数)。
MU为n*d的矩阵,R中的每一行为以MU中对应的行为均值的正态分布中抽取的一个样本。
SIGMA为dd的对称半正定矩阵,或者为ddn的array。若SIGMA为array,R中的每一行对应的分布的协方差矩阵为该array对应的一个page。也就是说:R(i,:)由MU(i,:)和SIGMA(:,:,i)产生。
如果协方差矩阵为对角阵,sigma也可用1d向量或1dn的array表示,如果MU是一个1d的向量,则SIGMA中的n个协方差矩阵共用这个MU。R的行数n由MU的行数n或者SIGMA的page数n决定。
r = mvnrnd(MU,SIGMA,cases)——从均值为MU(1d),协方差矩阵为SIGMA(dd)的正态分布中随机抽取cases个样本,返回casesd的矩阵r。
不使用现成的函数,可以通过一个线性变换来实现:
我们知道,matlab产生的n维正态样本中的每个分量都是相互独立的,或者说,它的协方差矩阵是一个数量矩阵mI,如:X = randn(10000,4);产生10000个4维分布的正态分布样本,协方差矩阵就是单位矩阵I。
定理 n维随机变量X服从正态分布N(u,B),若m维随机变量Y是X的线性变换,即Y=XC,其中C是n×m阶矩阵,则Y服从m维正态分布N(uC,C’BC)。
根据这条定理,我们可以通过一个线性变换C把协方差矩阵为I的n维正态样本变为协方差矩阵为C’C的n维正态样本。如果我们要产生协方