题目描述
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
深度优先遍历方法:
一条道走到黑,不撞南墙不回头。通常使用递归完成方便些。
深度遍历流程:
dfs(){
// 第一步,检查下标
// 第二步:检查是否被访问过,或者是否满足当前匹配条件
// 第三步:检查是否满足返回结果条件
// 第四步:都没有返回,说明应该进行下一步递归
// 标记
dfs(下一次)
// 回溯
}
int main() {
dfs(0, 0);
}
class Solution {
public:
using V = vector<int>;
using VV = vector<V>;
int dir[5] = {-1,0,1,0,-1};
int check(int n){
int sum = 0;
while(n){
sum += (n%10);
n /= 10;
}
return sum;
}
void dfs(int x, int y, int sho, int r, int c, int &ret, VV &mark){
if(x < 0 || x >= r || y >= c || y < 0 || mark[x][y] == 1){
return;
}
if(check(x) + check(y) > sho){
return;
}
mark[x][y] = 1;
ret += 1;
for(int i = 0; i < 4; ++i){
dfs(x + dir[i], y+dir[i+1], sho, r, c, ret, mark);
}
}
int movingCount(int threshold, int rows, int cols)
{
if(threshold <= 0){
return 0;
}
VV mark(rows, V(cols, -1));
int ret = 0;
dfs(0, 0, threshold, rows, cols, ret, mark);
return ret;
}
};
广度优先遍历方法:
每个点尽可能的遍历完整,遍历顺序按照。通常使用循环完成。
class Solution {
public:
using pii = pair<int, int>;
int dir[5] = {-1,0,1,0,-1};
int check(int n){
int sum = 0;
while(n){
sum += (n%10);
n /= 10;
}
return sum;
}
int movingCount(int threshold, int rows, int cols)
{
if(threshold <= 0){
return 0;
}
int ret = 0;
int mark[rows][cols];
memset(mark, -1, sizeof(mark));
queue<pii> q;
q.push({0,0});
mark[0][0] = 1;
while(!q.empty()){
auto node = q.front();
q.pop();
++ret;
for(int i = 0; i < 4; ++i){
int x = node.first + dir[i];
int y = node.second + dir[i + 1];
if(x >= 0 && x < rows && y >= 0 && y < cols && mark[x][y] == -1){
if(check(x) + check(y) <= threshold){
q.push({x, y});
mark[x][y] = 1;
}
}
}
}
return ret;
}
};