算法学习——引导(二维指针)

第一题 反转图像

在这里插入图片描述

class Solution {
public:
    vector<vector<int>> flipAndInvertImage(vector<vector<int>>& image) {
        // //空间复杂度O(n) 时间复杂度O(n2)
        // auto ret = image;
        // int n = image.size();
        // int m = image[0].size();
        
        // for(int i = 0; i < n; i++)
        // {
        //     for(int j = 0; j < m; j++)
        //     {
        //         ret[i][j] = 1 - image[i][m - j - 1];
        //     }
        // }
        // return ret;

        //空间复杂度O(1) 时间复杂度O(n2) 双指针  1^1 = 0,0^1=1
        int n = image.size();

        for(int i = 0; i < n; i++)
        {
            int left = 0;
            int right = n - 1;
            while(left < right)
            {
                //如果需要置换的元素不同,则置换取反后结果与未操作一致,所以仅需对需置换的相同元素取反即可
                if(image[i][left] == image[i][right])
                {
                    image[i][left] ^= 1;
                    image[i][right] ^= 1;
                }
                left++;
                right--;
            }
            //如果是列数是奇数,上述while循环在left == right时退出,对中间元素取反
            if(left == right)
            {
                image[i][right] ^= 1;
            }
        }
        return image;
    }
};

第二题 转置矩阵

在这里插入图片描述

class Solution {
public:
    vector<vector<int>> transpose(vector<vector<int>>& matrix) {
        //空间复杂度O(n), 时间复杂度O(n2)
        int n = matrix.size();
        int m = matrix[0].size();
        vector<vector<int>> ret(m, vector<int>(n));
        for(int i = 0; i < m; i++)
        {
            for(int j = 0; j < n; j++)
            {
                ret[i][j] = matrix[j][i];
            }
        }
        return ret;
    }
};

第三题 重塑矩阵

在这里插入图片描述

class Solution {
public:
    vector<vector<int>> matrixReshape(vector<vector<int>>& mat, int r, int c) {
        int m = mat.size();
        int n = mat[0].size();

        if(r * c != m * n)
        {
            return mat;
            cout << "error.";
        }

        vector<vector<int>> ret = vector(r, vector<int>(c));
        //时间复杂度O(n2)
        // int id;
        // for(int i = 0; i < r; i++)
        // {
        //     for(int j = 0; j < c; j++)
        //     {
        //         id = i * c + j; 
        //         ret[i][j] = mat[id / n][id % n];
        //     }
        // }

        //时间复杂度O(n)
        for(int x = 0; x < m * n; x++)
        {
            ret[x / c][x % c] = mat[x / n][x % n];
        }
        return ret;
    }
};

第四题 将一维数组转变成二维数组

在这里插入图片描述

第五题 二维网格迁移

在这里插入图片描述

class Solution {
public:
    vector<vector<int>> shiftGrid(vector<vector<int>>& grid, int k) {
        auto ret = grid;
        int m = grid.size();
        int n = grid[0].size();
        int nums = n * m;
        for(int i = 0; i < nums; i++)
        {
           ret[((i + k) % nums) / n][((i + k) % nums) % n] = grid[i / n][i % n];
        }
        return ret;
    }
};

第六题 图片平滑器

在这里插入图片描述

class Solution {
public:
    vector<vector<int>> imageSmoother(vector<vector<int>>& img) {
        int m = img.size();
        int n = img[0].size();
        auto ret = img;
        for(int i = 0; i < m; i++)
        {
            for(int j = 0; j < n; j++)
            {
                int sum = 0;
                int num = 0;
                for(int x = i - 1; x <= i + 1; x++)
                {
                    for(int y = j - 1; y <= j + 1; y++)
                    {
                        if(x >= 0 && x < m && y >= 0 && y < n)
                        {
                            num++;
                            sum += img[x][y];
                        }
                    }
                }
                ret[i][j] = sum / num;
            }
        }
        return ret;
    }
};

第七题 矩阵区域和

在这里插入图片描述

第八题 距离顺序排列矩阵单元格

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值