算法实现题 2-11 集合划分问题

问题描述:

n 个元素的集合{1,2,···, n }可以划分为若干个非空子集。例如,当 n=4 时,集合{1,2,3,4}可以划分为 15 个不同的非空子集如下:

{{1},{2},{3},{4}},

{{1,2},{3},{4}},

{{1,3},{2},{4}},

{{1,4},{2},{3}},

{{2,3},{1},{4}},

{{2,4},{1},{3}},

{{3,4},{1},{2}},

{{1,2},{3,4}},

{{1,3},{2,4}},

{{1,4},{2,3}},

{{1,2,3},{4}},

{{1,2,4},{3}},

{{1,3,4},{2}},

{{2,3,4},{1}},

{{1,2,3,4}}

其中,集合{{1,2,3,4}}由 1 个子集组成;集合{{1,2},{3,4}},{{1,3},{2,4}},{{1,4},{2,3}},{{1,2,3},{4}},{{1,2,4},{3}},{{1,3,4},{2}},{{2,3,4},{1}}由 2 个子集组成;集合{{1,2},{3},{4}},{{1,3},{2},{4}},{{1,4},{2},{3}},{{2,3},{1},{4}},{{2,4},{1},{3}},{{3,4},{1},{2}}由 3 个子集组成;集合{{1},{2},{3},{4}}由 4 个子集组成。

编程任务:

给定正整数 n 和 m,计算出 n 个元素的集合{1,2,···, n }可以划分为多少个不同的由 m 个非空子集组成的集合。

数据输入:

由文件 input.txt 提供输入数据。文件的第 1 行是元素个数 n 和非空子集数 m。

结果输出:

程序运行结束时,将计算出的不同的由m个非空子集组成的集合数输出到文件output.txt中。

输入文件示例

input.txt
4   3

输出文件示例

output.txt
6

思路:

解题思路:设n个元素的集合可以划分为F(n,m)个不同的由m个非空子集组成的集合。

F(1,1)=1;

F(2,1)=1,F(2,2)=1;

当有三个元素时:

一个子集的情况:{{1,2,3}},F(3,1)=1;

两个子集的情况:{{1,2},{3}},{{1,3},{2}},{{2,3},{1}},F(3,2)=F(2,1)+2*F(2,2)=3;

三个子集的情况:{{1},{2},{3}},F(3,3)=1。

当有四个元素时(即将元素4插入到三个元素分类的情况中):

一个子集的情况:{{1,2,3,4}},F(4,1)=1;

两个子集的情况:{{1,2,3},{4}},{{1,2,4},{3}},{{1,2},{3,4}},{{1,3,4},{2}},{{1,3},{2,4}},{{2,3,4},{1}},{{2,3},{1,4}},F(4,2)=F(3,1)+2*F(3,2)=7;

三个子集的情况:{{1,2},{3},{4}},{{1,3},{2},{4}},{{2,3},{1},{4}},{{1,4},{2},{3}},{{1},{2,4},{3}},{{1},{2},{3,4}},F(4,3)=F(3,2)+3*F(3,3)=6;

四个子集的情况:{{1},{2},{3},{4}},F(4,4)=1。

可得到递推公式F(n,m)=F(n-1,m-1)+m*F(n-1,m),当m=1或n=m时F(n,m)=1。

代码:

#include <iostream>
#include <vector>
#include <string.h>

using namespace std;

class File
{
public:
    vector<int> getNum(string path)
    {
        FILE* f=fopen(path.c_str(),"r");
        vector<int> ve;
        int num;
        while(fscanf(f,"%d",&num)!=EOF)
        {
            ve.push_back(num);
        }
        fclose(f);
        return ve;
    }
    int getAnswer(string path)
    {
        FILE* f=fopen(path.c_str(),"r");
        int num;
        fscanf(f,"%d",&num);
        fclose(f);
        return num;
    }
};

int func(int n,int m)
{
    if(n<1||m<1)
        return 0;
    if(n==1||n==m)
        return 1;
    return func(n-1,m-1)+m*func(n-1,m);
}
int main()
{
    File f;
    bool flag=true;
    for(int i=0; i<=10; i++)
    {
        vector<int> ve;
        ve=f.getNum("F:\\算法\\实验组2-分治-实验包\\prog28\\test\\stir"+to_string(i)+".in");
        int n=ve[0];
        int m=ve[1];
        int num=f.getAnswer("F:\\算法\\实验组2-分治-实验包\\prog28\\answer\\stir"+to_string(i)+".out");
        if(func(n,m)!=num)
        {
           flag=false;
            cout << "第" << i << "个测试用例未通过"<< endl;
        }
        else
            cout << "第" << i << "个测试用例通过" <<endl;
        ve.clear();
    }

    if(flag)
        cout << "测试用例全部通过" << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值