( 二 )图像的空间域增强_椒盐高斯噪声_空域均值中值滤波

本文介绍了图像增强在空间域的应用,包括空域均值滤波和中值滤波。通过实验展示了这两种滤波方法对高斯噪声和椒盐噪声的处理效果。均值滤波能有效平滑高斯噪声但可能导致图像模糊,而中值滤波在抑制椒盐噪声方面表现出色,但可能不适用于高斯噪声且模板增大易引起图像模糊。
摘要由CSDN通过智能技术生成

1,实验原理

图像增强是数字图像处理的基本内容之一,其目的是根据应用需要突出图像中的某些“有用”信息,削弱或去除不需要的信息,以改善图像的视觉效果,或突出图像的特征,便于计算机处理。图像增强可以在空间域进行,也可以在频率域中进行。

空间域滤波主要利用空间模板进行,如3*3,5*5模板等,一般来说,使用大小为m×n 的滤波器对大小为M×N 的图像f进行空间滤波,可表示成:

其中,m=2a+1, n=2b+1, w(s,t)是滤波器系数,f(x,y)是图像值

均值滤波器是一种空间平滑滤波器,它是对包含噪声的图像上的每个像素点,用它邻域内像素的平均值替代原来的像素值。例如,采用一个3×3的模板,待处理的像素为f(i,j),则处理后图像对应的像素值为g(i-1,j+1)

g(i,j)=1/9*(f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)+f(i,j-1)+f(i,j)+f(i,j+1)+f(i+1,j-1)+f(i+1,j)+f(i+1,j+1));    

中值滤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值