Text2SQL
文章平均质量分 65
阿_牛
这个作者很懒,什么都没留下…
展开
-
Excel 新增对话式智能分析功能
转自:智能数据分析技术,解锁Excel“对话”新功能Excel 新增对话式智能分析功能作为人们日常办公最重要的工具之一,Excel 功能强大而多样,但许多用户对 Excel 的使用停留在基础的表格制作与存储上,数据分析功能仍然具备一定的专业门槛。基于数据智能领域丰富的研究成果,微软亚洲研究院开发了一个智能数据分析算法 AnnaParser,来提高 Excel 的智能数据分析能力。为了解决新表格实体识别的问题,AnnaParser 首先引入了一个数据抽象模块(data abstraction)来识转载 2021-10-12 20:55:33 · 790 阅读 · 2 评论 -
万字综述Text to SQL技术
Text to SQL综述一、背景二、任务介绍三、数据集四、方法4.1 基于模板和规则4.2 基于Seq2Seq框架4.2.1 编码方法4.2.1.1 Table-aware4.2.1.2 Anonymous Encoding4.2.1.3 GNN4.2.1.4 Relation-Aware Self-Attention4.2.1.5 表格预训练4.2.2 解码方法4.2.2.1 pointer network4.2.2.2 Reinforcement Learn4.2.2.3 Sketch and Mul原创 2021-09-02 11:35:28 · 4802 阅读 · 1 评论 -
Text2SQL论文-12:GRAPPA: Grammar-Augmented Pre-Training for Table Semantic Parsing
ICLR 2021https://openreview.net/forum?id=kyaIeYj4zZ or http://arxiv.org/abs/2009.13845v1文章解读参考:https://blog.csdn.net/qq_42341984/article/details/115734395原创 2021-09-01 11:35:30 · 259 阅读 · 1 评论 -
Text2SQL论文-11:Data-Anonymous Encoding for Text-to-SQL Generation
在文本到SQL的生成中,输入话语通常包含大量与表中的列名或单元格相关的标记,称为表相关标记,将输入语句中的标记映射到SQL查询中的常量叫做词汇问题。词汇问题可以表述为一个顺序标记问题,称为匿名化,其中输入话语中的每个标记都将被标记为与列名、单元格或无相关。这些与表相关的标记对于下游的神经语义解析器来说是很麻烦的,因为它带来了复杂的语义。如果能在神经语义解析之前减少词法问题,训练难度会大大减轻。原因有两个:第一,通过在神经语义分析器之前匿名化输入话语中的表相关标记,我们可以隐藏表相关标..原创 2021-08-18 19:29:33 · 362 阅读 · 0 评论 -
Text2SQL论文-10:Model-based Interactive Semantic Parsing: Text-to-SQL
原文链接:https://blog.csdn.net/Joycezzz/article/details/109539389一、摘要&总结&未来工作1 摘要设计一个基于模型的智能代理-- decides whether and where human intervention is needed预测语义解析,确定是否需要人工干预以及在何处需要人工干预,并以自然语言生成一个澄清问题。代理的关键部分是一个世界模型:它接受一个感知(一个初始问题或来自用户的后续反馈)并过渡到一个新转载 2021-08-18 18:17:18 · 375 阅读 · 0 评论 -
Text2SQL论文-09:Semantic Parsing with Syntax- and Table-Aware SQL Generation
转自:https://www.sohu.com/a/241511850_657157文章:Semantic Parsing with Syntax- and Table-Aware SQL Generation作者:Yibo Sun, Duyu Tang, Nan Duan, Jianshu Ji , Guihong Cao , Xiaocheng Feng , Bing Qin, Ting Liu, Ming Zhou会议:ACL 2018本文中,我们以结构化查询语句为例介绍在语义解析转载 2021-08-18 17:26:44 · 460 阅读 · 0 评论 -
Text2SQL论文-08:Coarse-to-Fine Decoding for Neural Semantic Parsing
semantic parsing是将一句话映射为结构化的表示。作者采用由粗到细的两阶段生成方法,先生成忽略细节的表示,在将细节填充到之前的表示中。用两级encoder->decoder来实现。第一级decoder出sketch将sketch再编码联合input encoder一起再输出具体的variable细节。优点是分解问题。比一步生成,相对简单。...原创 2021-08-18 16:40:03 · 318 阅读 · 0 评论 -
Text2SQL论文-07:Robust Text-to-SQL Generation with Execution-Guided Decoding
对于NL2SQL任务提出了一个新的机制->execution guidance :对部分生成的sql执行情况为条件,在解码过程中检测并排除故障程序,从而对整个对于生成的sql语句进行纠正。 该机制可与任何自回归生成模型一起使用.基于S2S结构的attention 和 copy机制的生成会fail at generatingsyntactically validqueries 作者的核心思想在于这种sql语句一部分生成以后就可以执行,执行的结果反过来可以引导生成过程示例执行opp...原创 2021-08-18 15:57:33 · 482 阅读 · 0 评论 -
Text2SQL论文-06:SQLNet Generating Structured Queries From Natural Language Without Reinforcement Learn
https://zhuanlan.zhihu.com/p/71955744转载 2021-08-18 15:41:39 · 369 阅读 · 0 评论 -
Text2SQL论文-05:TABERT: Pretraining for Joint Understanding of Textual and Tabular Data
转自:https://blog.csdn.net/weixin_47474348/article/details/115938146AbstractBert是对纯文本做的预处理语言模型,而现有的很多数据集是半结构化的,如表格等等。所以文章提出了TaBert模型,这个模型能够学习如何表达文本语句和半结构化的表格。并在WikiTableQuestion和Spider上取得良好的效果。Introduction目前已经出现了一些基于大规模数据预训练的语言模型Bert了,但是对于一些结构化的数转载 2021-08-18 14:21:05 · 687 阅读 · 0 评论 -
Text2SQL论文-04:SyntaxSQLNet Syntax Tree Networks for Complex and Cross-Domain Text-to-SQL Task
转自:https://zhuanlan.zhihu.com/p/115183832SyntaxSQLNet是第一个专门针对Spider数据集的算法,论文发布在arXiv的时间为2018年10月。这个算法在Spider任务上exact matching的准确率为19.7%,进行数据增强后准确率为27.2%。以下对SyntaxSQLNet进行介绍,参考资料为论文原文[1]及其开源代码[2]。1. 提出问题之前的Text-to-SQL数据集,有的在任务定义上存在不足(如ATIS、GeoQuer转载 2021-08-18 10:54:08 · 539 阅读 · 0 评论 -
Text2SQL论文-03:TypeSQL Knowledge-based Type-Aware Neural Text-to-SQL Generation
原文链接:https://blog.csdn.net/lizhilikjgcisdgf/article/details/108412794在本文中,我们提出了一种新颖的方法TYPESQL,它将此问题视为插槽填充任务。 另外,TYPESQL利用类型信息更好地理解自然语言问题中的稀有实体和数字.1.输入预处理-类型识别:识别的类型包括数字类(整数、浮点、日期、年份),实体类(人名、地名、国家、结构、体育,基于Freebase的数据利用grams和关键词查询)、表的列明。参考图中最下面的type,每个转载 2021-08-18 10:44:28 · 530 阅读 · 0 评论 -
Text2SQL论文-02:Abstract Syntax Networks for Code Generation and Semantic Parsing
转载于https://zhuanlan.zhihu.com/p/79486610这篇文章主要介绍的一种新颖的neural semantic parsing的方法来做code generation,这个特殊设计网络的名字叫Abstract Syntax Network(ASN),是伯克利在2017年的工作。其中有几个亮点:使用了神经网络的方式生成code 使用了一种语法树来限制神经网络只能生成有效的输出。这种语法树是由一种叫Abstract Syntax Description Language(A转载 2021-08-18 10:14:53 · 563 阅读 · 0 评论 -
text2sql论文-01:SEQ2SQL: GENERATING STRUCTURED QUERIES FROM NATURAL LANGUAGE USING REINFORCEMENT LEARN
SEQ2SQL:使用强化学习将自然语言转为结构化查询语句基本信息标题:SEQ2SQL: GENERATING STRUCTURED QUERIES FROM NATURAL LANGUAGE USING REINFORCEMENT LEARNING会议:CoRR2017.作者:Victor Zhong, Caiming Xiong, Richard Socher链接:https://arxiv.org/abs/1709.00103摘要提出一个深层神经网络模型,用于生成sql:该模型生成一系列原创 2021-07-23 18:24:52 · 1258 阅读 · 0 评论