【问题描述】
相信大家都玩过扫雷的游戏。那是在一个n*m的矩阵里面有一些雷,要你根据一些信息找出雷来。万圣节到了,“余”人国流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子没有雷,那么它里面的数字表示和它8连通的格子里面雷的数目。现在棋盘是n×2的,第一列里面某些格子是雷,而第二列没有雷,
由于第一列的雷可能有多种方案满足第二列的数的限制,你的任务即根据第二列的信息确定第一列雷有多少种摆放方案。
输入格式
第一行为 N,第二行有N 个数,依次为第二列的格子中的数。
输出格式
一个数,即第一列中雷的摆放方案数。
【样例输入】
2
1 1
【样例输出】
2
dp背包(四维)
#include<iostream>
using namespace std;
//设四维数组f[N][2][2][2],
//一维第二列位置,二维三维四维存i-1,i,i+1是否有雷
const int maxn= 10001;
int a[maxn];
int f[maxn][2][2][2];
int n;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
f[0][0][0][0]=1;//假设第一位置 无
f[0][0][0][1]=1;//假设第一位置 有
for(int i=1;i<=n;i++)
{
if(!a[i])
f[i][0][0][0]=f[i-1][0][0][0]+f[i-1][1][0][0];
if(a[i]==1)
{
f[i][1][0][0]=f[i-1][0][1][0]+f[i-1][1][1][0];
f[i][0][1][0]=f[i-1][0][0][1]+f[i-1][1][0][1];
f[i][0][0][1]=f[i-1][0][0][0]+f[i-1][1][0][0];
}
if(a[i]==2)
{
f[i][1][1][0]=f[i-1][0][1][1]+f[i-1][1][1][1];
f[i][1][0][1]=f[i-1][0][1][0]+f[i-1][1][1][0];
f[i][0][1][1]=f[i-1][0][0][1]+f[i-1][1][0][1];
}
if(a[i]==3)
f[i][1][1][1]=f[i-1][0][1][1]+f[i-1][1][1][1];
}
int ans=0;
if(!a[n])ans=f[n][0][0][0];
if(a[n]==1)ans=f[n][1][0][0]+f[n][0][1][0];
if(a[n]==2)ans=f[n][1][1][0];
cout<<ans;
return 0;
}
dp背包(优化 三维)
#include<iostream>
using namespace std;
//三维数组f[N][2][2],
//一维第二列位置,二维三维存i,i+1是否有雷
const int maxn= 10001;
int a[maxn];
int f[maxn][2][2];
int n;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
f[0][0][0]=1;//假设第一位置 无
f[0][0][1]=1;//假设第一位置 有
for(int i=1;i<=n;i++)//f[i][j][k]表示当前在第i行,当前行是不是雷,下一行是不是雷的方案数。
{
if(a[i]==0)//a[i]==0,当前行、这一行和上一行都不能是雷:
{
f[i][0][0]+=f[i-1][0][0];
}
else if(a[i]==1)//a[i]==1,当前行、这一行和上一行只有一个是雷:
{
f[i][0][0]+=f[i-1][1][0];//之前的 当前行、下一行
f[i][0][1]+=f[i-1][0][0];
f[i][1][0]+=f[i-1][0][1];
}
else if(a[i]==2)//a[i]==2,当前行、这一行和上一行有两个是雷:
{
f[i][1][1]+=f[i-1][0][1];
f[i][0][1]+=f[i-1][1][0];
f[i][1][0]+=f[i-1][1][1];
}
else if(a[i]==3)//a[i]==3,当前行、这一行和上一行都是雷:
{
f[i][1][1]+=f[i-1][1][1];
}
}
cout<<f[n][0][0]+f[n][1][0]<<endl;
return 0;
}
判断出现可能性
#include<bits/stdc++.h>
using namespace std;
const int maxn= 10001;
int a[maxn];
int f[maxn];
int n;
int ans=0;
int check()
{
for(int i=2;i<n;i++)
{
f[i+1]=a[i]-f[i]-f[i-1];//上一行+当前行+下一行-当前行-上一行 = 下一行
if(f[i+1]<0) return 0;//如果下一行 < 0 不可能出现
}
if((a[n]-f[n]-f[n-1])!=0)//最后一个
return 0;//上一行+当前行 - 当前行 -上一行!=0 不可能出现
return 1;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
if(a[1]==0)
ans+=check();//判断这种情况是否可能出现
else if(a[1]==1)
{
f[1]=1;//可能第一个是1
ans+=check();
memset(f,0,sizeof(f));
f[2]=1;//可能第一个是0 第二个是1
ans+=check();
}
else
{
f[1]=1;//第一个是1
f[2]=1;//第二个也是1
ans+=check();
}
printf("%d\n",ans);
return 0;
}
类似
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n;
int a[10010], f[10010],cnt;
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
}
for (f[1] = 0; f[1] <= 1; f[1]++)
{
bool flag = true;
for (int i = 2; i <= n; i++)
{
f[i] = a[i - 1] - f[i - 1] - f[i - 2];
if (f[i] != 0 && f[i] != 1)
{
flag = false;
break;
}
if (i == n && f[i] + f[i - 1] != a[i])
flag = false;
}
if (flag)
cnt++;
}
printf("%d", cnt);
return 0;
}