相信很多c语言初学者和我一样都会接触到这个题目
接下来我将站在我理解的角度来进行讲述
首先我们要知道什么是素数
素数:也被成为质数,一个大于1的正整数,除了1和它本身外,不能被其他正整数整除,这就叫做素数。
我将用两种方法来达到程序要求效果
1.试除法
逐个测试每个数字是否为素数,从2开始,对于每个数字,将其与小于本身的所有可能因子进行取余操作,如果存在,则不为素数,反之,为素数。
这也是逻辑简单,但是新手常用的一个方法,缺点是运行效率低下。
#include<stdio.h>
#include<math.h>
int main()
{
int i, j, sum = 0;
printf("All prime numbers between 1 and 100 are : ");
for (i = 2; i <= 100; i++)//遍历2~100
{
int isPrime = 1;//初始化isPrime为1,假设i是素数
for (j = 2; j <= sqrt(i); j++)//检测是否能被2到sqrt(i)之间的数字整除
{
//为什么要用 j <= sqrt(i);
//素数定义:一个素数是只能被1和它自身整除的大于1的自然数。
//因数对:任何整数 i(不为素数)都至少有一个因数对,即两个数 a 和 b 使得 i = a * b。
//因数的大小:如果 a 和 b 中的一个小于或等于 sqrt(i),而另一个必然大于或等于 sqrt(i)。这是因为如果两个因数都大于 sqrt(i),它们的乘积将会大于 i,违反了它们是 i 的因数的前提。
//效率提升:由于 a 和 b 必定有一个不大于 sqrt(i),我们只需要检查从2到 sqrt(i) 的因数。如果在这个范围内找到了一个能整除 i 的数,那么 i 就不是素数。
//避免重复:因为 i 的因数总是成对出现,如果 j 是一个小于或等于 sqrt(i) 的因数,那么 i / j 将是 i 的另一个因数,且必定大于 sqrt(i)。因此,找到 j 作为因数已经隐含了其对应的另一个因数。
if (i % j == 0)
{
isPrime = 0;//如果if条件满足,则不是素数,定义为0然后跳出循环
break;//这个条件语句将非素数排除出来
}
}
if (isPrime)//1为真,0为假,真就能运行
{
printf("%d ", i);
sum += i;//每次打印完之后将这个素数累加在sum中,等素数都打印完之后,所有素数的和就出来了
}
}
printf("\nThe sum of these prime numbers are :%d\n ", sum);
return 0;
}
2.自定义函数法
#include <stdio.h>
int isPrime(int num)//自定义一个函数isPrime来判断该数字是否为素数
{
int i;
if (num == 2 || num == 3)
return 1;//如果是2或3,它们是素数直接返回1
if (num < 2 || num % 2 == 0)
return 0;//小于2或者是偶数,返回0
for (i = 3; i * i <= num; i += 2)
{
if (num % i == 0)
return 0;
}
//前面已经排除到3,直接从3开始进入循环。num不是素数的话,它肯定有一个因素不大于它的平方根
//如果num能被一个大于其平方根的数整数,那么它肯定也能被一个小于或者等于其平方根的数整除
//i+=2;每次循环后,i增加2,这样的意义在于,我们是3开始,+1肯定会遇到偶数,+2可以规避所有偶数
//num%i==0;如果num能被i整除,余数是0那么就不是素数
//循环结束的时候,没有找到num被整除则为真的i,那么i就是素数
return 1;
}
int main()
{
int i, sum = 0;
printf("All prime numbers bejtween 1 and 100 are :");//在终端提示所有的素数
for (i = 2; i <= 100; i++)
{
if (isPrime(i))//自定义函数调用
{
printf("%d ", i);//打印素数,接在提示后面,(d后面留一个空格)
sum += i;//每次循环,把打印出来的数字累加,存放在sum中
}
}
printf("\nThe sum of these prime numbers = :%d\n", sum);
return 0;
}
/*凯补充:
因数是成对出现的:
任何整数的因数总是成对出现的。
例如,如果 num 能被 j 整除,那么num = j * k,
其中 k 也是 num 的一个因数。如果 j 和 k 都是小于 num 的因数,
那么 j 必定小于或等于 num 的平方根,而 k 必定大于或等于 num 的平方根。
平方根作为界限:
由于 j 和 k 是成对出现的,如果 j 大于 num 的平方根,
那么 k 必定小于 num 的平方根。因此,我们不需要检查大于 num 平方根的数,
因为如果 num 有一个大于其平方根的因数,
那么它必然也有一个小于或等于其平方根的因数
我们已经通过检查较小的因数找到了。*/
以上便是我对该题目的全部理解,感谢您的观看,祝您早日成为编程大牛