论文阅读笔记
文章平均质量分 86
ilove_Moretz
这个作者很懒,什么都没留下…
展开
-
论文阅读笔记:Multi-Label Image Recognition with Graph Convolutional Networks
0、简介论文题目:Multi-Label Image Recognition with Graph Convolutional Networks下载链接:https://openaccess.thecvf.com/content_CVPR_2019/papers/Chen_Multi-Label_Image_Recognition_With_Graph_Convolutional_Networks_CVPR_2019_paper.pdf会议:CVPR20191、motivation本文的任务是原创 2021-01-10 19:20:24 · 616 阅读 · 2 评论 -
论文阅读笔记:Deep Extreme Multi-label Learning
0、简介论文名字:Deep Extreme Multi-label Learning下载地址:https://dl.acm.org/doi/abs/10.1145/3206025.3206030会议:ICMR 20181、motivation本文的任务是极限多标签分类(XML),XML和普通的多标签分类的区别是XML的标签量巨大。本文使用度量学习(deep metric learning)的方法学习输入x的embedding,使用图表示学习的方法学习label的embedding,然后使用基于原创 2020-12-30 21:02:24 · 952 阅读 · 2 评论 -
论文阅读笔记:BERT for Joint Intent Classification and Slot Filling
0、简介论文名字:BERT for Joint Intent Classification and Slot Filling下载地址:https://arxiv.org/abs/1902.10909会议:无1、motivation这是一篇比较早的论文,在Bert刚出来不久,本文使用Bert来实现natural language understanding中的intent classification和slot filing任务2、模型(1) Slot Filling首先介绍一下什么是sl原创 2020-12-30 20:55:48 · 764 阅读 · 0 评论 -
论文阅读笔记:Label-aware Document Representation via Hybrid Attention for Extreme Multi-Label Text
0、简介论文名字:Label-aware Document Representation via Hybrid Attention for Extreme Multi-Label Text Classification下载地址:https://arxiv.org/abs/1905.10070会议:无1、motivation本文的任务是文本的多标签分类。之前关于文本多标签分类的工作大多集中于学习文本和label 的content,忽略了label 之间的结构信息。本文通过学习labe原创 2020-12-30 20:43:06 · 638 阅读 · 0 评论 -
论文阅读笔记:Label-Specific Document Representation for Multi-Label Text Classification
0、简介论文名字:Label-Specific Document Representation for Multi-Label Text Classification论文链接:https://www.aclweb.org/anthology/D19-1044.pdf会议:ACL20191、motivation本文的任务是文本多标签分类任务,在文本多标签分类任务中,一个待分类的文档会有多个标签,因此一篇文档的整体语义信息是由多个部分组成的。本文引入标签信息,使用注意力机制捕获文档和不同标签之间的原创 2020-12-30 20:18:23 · 1387 阅读 · 0 评论 -
论文阅读笔记:Tracking State Changes in Procedural Text: A Challenge Dataset and Models for Process Paragra
0、简介论文名字:Tracking State Changes in Procedural Text A Challenge Dataset and Models for Process Paragraph Comprehension下载地址:https://arxiv.org/pdf/1805.06975.pdf会议:ACL 20181、论文的motivationMRC是近年来NLP领域比较热门的问题。在MRC中,追踪过程式文本中实体的状态是一个很重要的工作,识别实体在不同步骤中的状态可以更原创 2020-12-20 20:34:11 · 295 阅读 · 0 评论 -
论文阅读笔记:Learning from Task Descriptions
0、简介论文名字:Learning from Task Descriptions下载地址:https://www.aclweb.org/anthology/2020.emnlp-main.105/会议:ACL 20201、论文的motivation机器学习的任务大都是从训练样本中学习样本的分布,然后用学习到的分布在测试集上进行预测。本文提出一种框架从任务描述中进行学习,并构建了ZEST数据集,该数据集能用于从任务描述中学习的任务。在读这篇论文之前,单纯的看标题,感觉是一篇不可思议的工作,原创 2020-11-30 10:33:29 · 473 阅读 · 0 评论 -
论文阅读笔记:LINE: Large-scale Information Network Embedding
0、简介论文名字:LINE: Large-scale Information Network Embedding下载地址:http://www.findshine.com/me/downloads/papers/WWW2015_LINE.pdf会议:WWW 20151、论文的motivation目前已有的节点表示方法很多不能在大规模的图上应用,并且大多数现有方法在做节点表示的时候只关注一阶相似度。因此本文提出Line模型,该模型可以在超大型网络上实现节点表示,并且同时学习了节点的一阶相似度和二原创 2020-11-17 20:27:31 · 696 阅读 · 1 评论 -
论文阅读笔记:Random Walk Graph Neural Networks(NIPS2020)
0、简介论文名字:Random Walk Graph Neural Networks下载地址:https://www.lix.polytechnique.fr/~nikolentzos/files/rw_gnns_neurips20会议:NIPS20201、论文的motivation图神经网络可以学习图的特征,从而进行图分类的任务。目前,主流的图神经网络算法都是MPNN的结构。这种结构的图神经网络可以很好的学习节点的特征信息,但是却忽略的图的结构信息。为了利用学习图的结构信息,这篇文章提出了基原创 2020-11-04 11:07:49 · 1947 阅读 · 2 评论