论文阅读笔记:Label-Specific Document Representation for Multi-Label Text Classification

本文介绍了一种针对文本多标签分类任务的模型,利用BiLSTM获取文本表示,结合self-attention机制捕捉文档与标签间的关系,并引入label-attention机制考虑标签语义。模型融合了文本内容和标签信息,通过自适应注意力融合策略优化预测。

0、简介

  • 论文名字:Label-Specific Document Representation for Multi-Label Text Classification
  • 论文链接:https://www.aclweb.org/anthology/D19-1044.pdf
  • 会议:ACL2019

1、motivation

本文的任务是文本多标签分类任务,在文本多标签分类任务中,一个待分类的文档会有多个标签,因此一篇文档的整体语义信息是由多个部分组成的。本文引入标签信息,使用注意力机制捕获文档和不同标签之间的语以信息。

2、模型结构

在这里插入图片描述

(1)Input Text Representation

本文使用BiLSTM对输入的文本学习representation,BiLSTM隐藏层的双向输出拼接起来当做文本的表示。

在这里插入图片描述

上面公式中H为文本的表示

(2)Self-attention Mechanism

使用self-attention计算文本对每个label的表示,计算公式如下所示:

在这里插入图片描述

A(s)A^{(s)}A(s)的维度是l∗nl*nlnlll是label空间的大小,n是文本中token的个数。A(s)A^{(s)}A(s)代表本文对每个label的attention值。

在这里插入图片描述

上面公式计算得到的Mj(s)M_{j}^{(s)}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值