0、简介
- 论文名字:Label-Specific Document Representation for Multi-Label Text Classification
- 论文链接:https://www.aclweb.org/anthology/D19-1044.pdf
- 会议:ACL2019
1、motivation
本文的任务是文本多标签分类任务,在文本多标签分类任务中,一个待分类的文档会有多个标签,因此一篇文档的整体语义信息是由多个部分组成的。本文引入标签信息,使用注意力机制捕获文档和不同标签之间的语以信息。
2、模型结构

(1)Input Text Representation
本文使用BiLSTM对输入的文本学习representation,BiLSTM隐藏层的双向输出拼接起来当做文本的表示。

上面公式中H为文本的表示
(2)Self-attention Mechanism
使用self-attention计算文本对每个label的表示,计算公式如下所示:

A(s)A^{(s)}A(s)的维度是l∗nl*nl∗n,lll是label空间的大小,n是文本中token的个数。A(s)A^{(s)}A(s)代表本文对每个label的attention值。

上面公式计算得到的Mj(s)M_{j}^{(s)}

本文介绍了一种针对文本多标签分类任务的模型,利用BiLSTM获取文本表示,结合self-attention机制捕捉文档与标签间的关系,并引入label-attention机制考虑标签语义。模型融合了文本内容和标签信息,通过自适应注意力融合策略优化预测。
最低0.47元/天 解锁文章
318

被折叠的 条评论
为什么被折叠?



