麻省理工大学教授教你怎样做…

9. 导师
在MIT,有两种类型的导师,教学导师和论文导师。
教学导师的工作比较简单。每一位研究生都被分配了系里的一位老师作为教学导师。教学导师的作用
是作为系方代表,告诉你对你的正式要求是什么,如果你的进度慢了敦促你,批准你的课程计划等。如果
一切顺利的话,你每年只需要见教学导师两次,在注册日那天。从另一方面讲,如果你遇到了困难,教学
导师替你向系里反映或者提供指导。
论文导师是监督你研究的人。选择论文导师是你读研期间最重要的选择,比选题都重要得多。从更广
的意义上讲,AI是通过师傅带徒弟的方式学习的。有很多领域的技术方面或者研究过程方面的非正式知识,
只能从导师那里学到,在任何教科书上都找不到。
很多AI教员都是行为古怪的人,毕业生也如此。导师与研究生的关系是非常个性化的,你的个人特
点必须与导师的配合得很好,这样你们才能合作成功。
不同的导师具有不同的风格。下面是一些需要值得考虑的因素:
.. 你需要多大程度的指导?有些导师会给你一个定义良好的适合做论文的问题,对解决方法进行解释,
并告诉你如何开展工作。如果你陷在某个地方了,他们会告诉你如何开展下去。其他的导师属于甩手
型,他们可能对你的选题毫无帮助,但是一旦你选好题目,他们对于引导你的思路具有非常大的作用。
你需要考虑清楚自己适合独立工作还是需要指导。
.. 你需要多大程度的联系?有的导师要求每周与你见面,听取你工作进展的汇报。他们会告诉你应该读
的论文,并给你实际的练习和项目做。其他的导师每学期与你的谈话不会超过两次。
.. 你能承受的压力有多大?有些导师施加的压力是很大的。
.. 需要多少情感支持?
.. 听取导师意见的认真程度如何?大多数导师会相当正式的建议你的论文题目。有些导师是值得信赖
的,他们给出的建议,如果按照执行,几乎肯定会做出一篇可接受程度的论文,如果不是令人兴奋的
论文的话。其他的则一下子抛出很多思路,大部分是不切实际的,但是有一些,或许会导致重大突破。
如果选了这样的一位导师,你首先得把自己当作一个过滤器。
.. 导师提供了什么类型的研究组?有些教授会创造环境,把所有的学生聚集在一起,即使他们做的不是
同一个项目。很多教授每周或者每两周与自己的学生们会面。这对你有用么?你能与教授的学生和睦
相处么?有些学生发现他们更能与其他教研组的学生建立良好的工作关系。
.. 你想参与大的项目么?有些教授将大系统分解,每个学生负责一部分。这给了你与一组人讨论问题的
机会。
.. 你想被共同监督么?有些论文项目包含了多个AI领域,需要你与两个以上的教授建立密切的工作关
系。虽然你正式的论文导师只有一位,但是有时候这并不反映实际情况。
.. 导师愿意指导其研究领域之外的论文题目么?你是否能与导师一起工作,比你做什么本身更重要。
MIT的机器人系就曾指导过量子物理学和认知建模方面的论文;推理方面的教员指导过视觉方面的论
文。但是有些教员只愿意指导自己研究兴趣领域内的论文。这对于那些欲获得终身职位的年轻教员来
说尤其如此。
.. 导师会为了你跟体制作斗争吗?有些导师会为了你跟系里或者某些有敌意的实体作斗争。有时候体制
对某些类型的学生不利(特别是对于女学生和怪癖的学生),因此这一点很重要。
.. 导师愿意并且能够在会议上推荐你的工作吗?这是导师工作的一部分,对你将来工作意义重大。
上述这些因素,不同学校的情况很不相同。与大部分学校相比,MIT提供了多得多的自由。
找论文导师是你研究生一年级最主要的任务。研一结束时,或者研二学年开始阶段,你必须有一个论
文导师。下面是一些诀窍:
.. 查阅实验室的研究总结。其中有一页左右的篇幅描述了每个教师以及很多研究生目前在做什么。
.. 如果你对某些教师的研究工作感兴趣,查阅其最近的论文。
.. 在第一学期,与尽可能多的教师交谈。去感受他们喜欢做什么,他们的研究和指导风格是什么。
.. 与预期导师的研究生交谈。要保证与导师的多个学生交流,因为每位导师在与不同的学生交流时有不
同的工作方式和交流效果。不能被一个学生的看法所左右。
.. 很多教师所在研究组的会议对新同学都是公开的。这是非常好的了解导师工作方式的途径。
作为一门学科,AI不同寻常的一点是很多有用的工作是由研究生完成的,而不是博士——他们忙着做
管理去了。这有几个后果。一是某个教师的声望,是否会获得终身聘用,在很大程度上取决于学生的工作。
这意味着教授有很强烈的动机吸引最好的学生为自己工作,并给与有效的指导和足够的支持。另外一个后
果是,由于大部分学生的论文方向是由导师形成的,因此整个领域的方向和发展很大程度上取决于导师选
择什么样的研究生。
当选定了导师,决定了自己对导师的要求后,要确保导师知道。不要由于交流不好,浪费时间于自己
并不想做的项目上。
不要完全依赖你的导师,要建立自己的网络。找一些能定期评审你的工作的人是很重要的,因为研究
时很容易走火入魔。网络中的人可以包括自己实验室或者外单位的研究生和老师。
在与其他学生、老师甚至自己的导师的关系中,很可能会碰到种族主义者,性别歧视,同性恋或者其
他令人尴尬的事情。如果你不幸碰到了,去寻求帮助。MIT的ODSA出版了一本叫做“STOP Harrassment”
的小册子,里面有很多建议。《Computer Science Women's Report》,可在LCS文档室找到,也与之相关。
实验室中有些同学只是名义上由导师指导。这对于那些独立性很强的人来说很好。但是如果你已经完
成了某项导师指导的工作,除非你确保没有导师也行且自己有牢靠的支持网络,否则就不要这么干。
10. 论文
做毕业论文将占据研究生生活的大部分时间,主要是去做研究,包括选题,这比实际的写作耗时更多。
硕士论文的目的是为做博士论文练兵。博士水平的研究如果没有准备好的话,是很难进行的。硕士论
文最本质的要求是展示自己的掌握程度:你已经完全理解了本领域最新进展,并具备相应的操作水平。并
不需要你对本领域的最新知识有所拓展,也不要求发表你的论文。然而我们实验室的论文总是比较大气的,
因此很多硕士论文实际上都对本领域的发展作出了显著的贡献,大约有一半都出版了。这并不一定是好事
情。很多人精力都集中于硕士的工作,所以MIT有这样的名声:硕士论文的质量往往比博士论文高。这有
悖于硕士工作本来是为博士研究作准备的原有目的。另外一个因素是所做研究要对领域有所贡献,至少需
要两年,这使得研究生学习时间之长令人难以忍受。现在或许你感受不到匆忙,但当你已经在实验室呆了
七年后,你肯定迫不及待地想逃出去。硕士从入学到毕业平均时间是两年半,但是,计算机系强烈鼓励学
生提前毕业。如果某个硕士生的题目过于庞大,可将之分解,一部分来做硕士论文,另一部分给博士生作
博士论文。
想要了解硕士论文研究是什么样的,读几本最新的硕士论文。记住比较好的论文是那些出版的或者成
为技术报告的,因为这标志着该论文被认为是扩展了领域的最新知识——换句话说,他们的论文远远超出
了硕士论文的水平。还要读一些通过的但是没有出版的论文,所有通过的论文都可以在MIT图书馆中找到。
博士论文必须对最新知识有所拓展,博士论文的研究必须具备可出版的质量。MIT的泱泱气质又表现出来
了,很多博士论文在几年内都是某个子领域的权威工作。对于MIT的博士论文来说,开创一个新领域,或
者提出并解决一个新问题,并不是什么了不起的事情。虽然,这并不是必需的。
一般来说,需要两到三年的时间来做博士论文。很多人花一到两年的时间跟硕士生活说再见,以及选
题。这段时间可以去尝试一些别的事情,例如做助教或者在某个非AI领域打下坚实的基础或者组织个乐队。
博士论文的实际写作时间大约是一年。
选题是论文工作中最重要最困难的部分:
.. 好的论文题目不仅能够表达个人观点,而且可与同行交流。
.. 选择题目必须是自己愿意倾注热情的。个人远景观点是你作为一个科学家的理由,是你最为关切的意
象,原则,思路或者目标。有多种形式。或许你想造一台可与之交谈的计算机,或许你想把人类从计
算机的愚蠢使用中拯救出来,或许你想展示万物都是统一的,或许你想在太空发现新生命。远景观点
总是比较大的,你的论文并不能实现你的远景,但是可以朝着那个方向努力。
.. 做论文时,最困难的就是如何将问题消减至可解决的水平,同时规模又足以做一篇论文。“解决AI的
宽度优先”是常见毛病的一个例子,题目太大太虚了。你会发现需要不断的缩小题目的范围。选题是
一个渐进的过程,不是一个离散的事件,会持续到你宣布论文已经完成那一刻为止。实际上,解决问
题通常比精确地描述问题要容易得多。如果你的目标是一个五十年的工程,那么合理的十年工程是什
么,一年的呢?如果目标的结构庞大,那么最核心的部件是什么,如何最大程度的了解核心部件?
.. 一个重要的因素是你可以忍受多大程度的风险。在最终的成功和风险之间需要权衡。这也并不总是对
的,AI中有很多研究者尚未涉及的想法。
.. 好的论文选题有一个中心部分,你确信肯定可以完成,并且你和你的导师都同意这已经满足毕业要求
了。除此之外,论文中还有多种扩展,有失败的可能,但如果成功了,会增加论文的精彩程度。虽然
不是每一个论文选题都符合这个模式,但值得一试。
.. 有些人觉得同时在多个项目中工作可以在选题的时候选择可以完成的那个。这确实降低了风险。另外
一些人则愿意在做任何工作之前,选一个单独的题目。
.. 可能你只对某个领域感兴趣,这样你的选题范围就狭窄得多。有时候,你会发现系里的老师没有一个
人能够指导你选择的领域。可能还会发现好像那个领域没什么很自然的选题,反而对别的领域有好想
法。
.. 硕士选题比博士选题更难,因为硕士论文必须在你所知不多没有足够自信时就完成。
.. 博士选题需要考虑的一个因素是是否继续硕士阶段所研究的领域,可能拓展或者作为基础,或者干脆
转到另外一个领域。待在同一个领域事情就简单了,可能只需要一到两年就毕业了,特别是如果在硕
士阶段的工作中已经发现了适合做博士论文的题目。不足之处在于容易定型,改换领域则能增加知识
的宽度。
.. 有的论文题目很新奇,有的则很普通。前者开创了新领域,探索了以前未曾研究过的现象,或者为很
难描述的问题提供了有效的解决方法;后者则完美地解决了定义良好的问题。两种论文都是有价值的。
选择哪一种论文,取决于个人风格。
.. 论文的“将来的工作”部分,是很好的论文题目来源。
.. 无论选什么样的题目,必须是前人未曾做过的。即使是同时有人做的工作,也不好。有很多东西可作,
根本无需竞争。还有一种常见的情况,读了别人的论文后感觉很惊慌,好像它已经把你的问题解决了。
这通常发生在确定论文题目过程中。实际上往往只是表面类似,因此将论文送给某个了解你的工作的
高人看看,看他怎么说。
.. MIT AI实验室的论文并非全是有关人工智能的;有些是有关硬件或者程序设计语言的,也行。
选好题后,即使有点虚,你必须能够回答下列问题:论文的论点是什么?你想说明什么?你必须有一
句,一段,五分钟的答案。如果你不知道自己在干什么,别人也不会严肃对待你的选题,更糟糕的是,你
会陷在选题——再选题的圈子里而不能自拔。
开始作论文研究后,一定要能够用简单的语言解释每一部分的理论和实现是如何为目标服务的。
记住,一旦选好了题目,你必须与导师就论文完成的标准达成清晰的一致。如果你和他对论文具有不
同的期望,最后你肯定死得很惨。必须定义好“完成测试”的标准,像一系列的能够证明你的理论和程序
的例子。这是必须做的,即是你的导师并不这么要求。如果环境发生了根本的变化,测试也要随之改变。
首先尝试论文问题的简化版本。用实例检验。在形成理论抽象之前,要完整的探究具有代表性的例子。
做论文的过程中,有很多浪费时间的方式。要避免下列活动(除非确实跟论文相关):语言表达的设
计;用户接口或者图形接口上过分讲究;发明新的形式化方法;过分优化代码;创建工具;官僚作风。任
何与你的论文不是很相关的工作要尽量减少。
一种众所周知的现象“论文逃避”,就是你突然发现改正某个操作系统的BUG是非常吸引人也很重要
的工作。此时你总是自觉不自觉的偏离了论文的工作。要记住自己应该做些什么。(本文对于部分作者来说就属于论文逃避现象)。
 

11. 研究方法论
[本部分内容比较少,请添加]
研究方法学定义了什么是科研活动,如何开展研究,如何衡量研究的进展,以及什么叫做成功。AI
的研究方法学是个大杂烩。不同的方法论定义了不同的研究学派。
方法是工具。使用即可,不要让他们来使用你。不要把自己陷于口号之中:“AI研究需要牢靠的基础”,
“哲学家只会高谈阔论,人工智能则需要拼搏”,“在问为什么之前,先搞清楚计算的是什么”。实际上,要
在人工智能领域取得成功,你必须擅长各种技术方法,还必须具备怀疑的态度。例如,你必须能够证明定
理,同时你还必须思考该定理是否说明了什么。
很多优秀的AI篇章都是巧妙地在几种方法论中取得平衡。例如,你必须选择一条在太多理论(可能
与任何实际问题都无关)和繁琐的实现(把实际的解决方法表达得语无伦次)之间的最佳路线。你经常会
面临区分“干净”和“肮脏”的研究决策。你应该花时间将问题在某种程度上形式化吗?还是保持问题的
原始状态,此时虽然结构不良但更接近实际?采用前一种方法(如果可行的话)会得到清晰确定的结果,
但这一过程往往是繁琐的,或者至少不会直接解决问题。后者则有陷入各种处理的漩涡之中的危险。任何
工作,任何人,必须作出明智的平衡。
有些工作象科学。你观察人们是怎样学习算术的,大脑是如何工作的,袋鼠是如何跳的,然后搞清楚
原理,形成可检验的理论。有些工作象工程:努力创建一个更好的问题解决器或者算法。有些工作象数学:
跟形式化打交道,要理解属性,给出证明。有些工作是实例驱动的,目标是解释特定的现象。最好的工作
是以上几种的结合。
方法具有社会性,看看别人是如何攻克类似难题的,向别人请教他们是如何处理某种特殊情况的。
12. 情感因素
研究是艰苦的工作,很容易对之失去兴趣。一个令人尴尬的事实是在本实验室读博的学生只有很少比
例最后获得学位。有些人离开是因为可以在产业界赚到更多的钱,或者由于个人的原因;最主要的原因则
是由于论文。本节的目标是解释这种情况发生的原因,并给出一些有益的建议。
所有的研究都包含风险。如果你的项目不可能失败,那是开发,不是研究。面对项目失败时是多么艰
难啊,很容易将你负责的项目失败解释为你自己的失败。虽然,这实际上也证明了你有勇气向困难挑战。
在人工智能领域很少有人总是一直成功,一年年地出论文。实际上,失败是经常的。你会发现他们经
常是同时做几个项目,只有一些是成功的。最终成功的项目也许反复失败过多次。经历过很多由于方法错
误的失败之后,才取得最终的成功。
在你以后的工作生涯中,会经历很多失败。但是每一个失败的项目都代表了你的工作,很多思想,思
考方式,甚至编写的代码,在若干年后你发现可用于另外一个完全不同的项目。这种效果只有在你积累了
相当程度的失败之后才会显现出来。因此要有最初的失败以后将会起作用的信念。
研究所花费的实际时间往往比计划的要多得多。一个小技巧是给每个子任务分配三倍于预期的时间
(有些人加了一句:“..,即使考虑了这条原则”)。
成功的关键在于使得研究成为你日常生活的一部分。很多突破和灵感都发生在你散步时。如果无时无
刻地都潜意识的思考研究,就会发现思如泉涌。成功的AI研究者,坚持的作用一般大于天资。“尝试”也
是很重要的,也就是区分浅薄的和重要的思路的能力。
你会发现自己成功的比例是很随机的。有时候,一个星期就做完了以前需要三个月才能完成的工作。
这是令人欣喜的,使得你更愿意在本领域工作下去。其他一些时候,你完全陷在那里,感觉什么也做不了。
这种情况很难处理。你会觉得自己永远不会做出任何有价值的东西了,或者觉得自己不再具备研究者的素
质了。这些感觉几乎肯定是错误的。如果你是MIT录取的学生,你就是绝对合格的。你需要的是暂停一下,
对糟糕的结果保持高度的容忍。
通过定期设置中短期的目标,例如每周的或者每月的,你有很多工作要做。增加达到这些目标的可能
性有两种方法,你可以把目标记在笔记本中,并告诉另外一个人。你可以与某个朋友商定交换每周的目标
并看谁最终实现了自己的目标。或者告诉你的导师。
有时你会完全陷在那里,类似于写作过程的思路阻塞,这有很多可能的原因,却并无一定的解决方法。
.. 范围过于宽泛了,可尝试去解决流程中的子问题。
.. 有时候对你研究能力的怀疑会消磨掉你所有的热情而使得你一事无成。要牢记研究能力是学习而得的
技能,而不是天生的。
.. 如果发现自己陷入严重的困境,一个多星期都毫无进展,尝试每天只工作一小时。几天后,你可能就
会发现一切又回到了正轨。
.. 害怕失败会使得研究工作更加困难。如果发现自己无法完成工作,问问自己是否是由于在逃避用实验
检验自己的思路。发现自己最近几个月的工作完全是白费的这种可能,会阻止你进一步开展工作。没
有办法避免这种情况,只要认识到失败和浪费也是研究过程的一部分。
.. 看看Alan Lakien的书《How to Get Control of Your Time and Your Life》,其中包含很多能使你进入充满
创造力的状态的无价方法。
很多人发现自己的个人生活和做研究的能力是相互影响的。对于有些人来说,当生活中一切都不如意
时,工作是避难所。其他的人如果生活陷入混乱时就无法工作了。如果你觉得自己确实悲痛得难以自拔,
去看看心理医生。一份非正式的调查表明,我们实验室大约有一半的学生在读研期间看过一次心理医生。
使得人工智能那么难的一个原因是没有被普遍接受的成功标准。在数学中,如果你证明了某个定理,
你就确实做了某些事情;如果该定理别人都证不出来,那么你的工作是令人兴奋的。人工智能从相关的学
科中借来了一些标准,还有自己的一些标准。不同的实践者,子领域和学校会强调不同的标准。MIT比其
他的学校更强调实现的质量,但是实验室内部也存在很大的不同。这样的一个后果就是你不可能令所有的
人都满意。另外一个后果就是你无法确定自己是否取得了进展,这会让你觉得很不安全。对你工作的评价
从“我所见过最伟大的”到“空虚,多余,不明所以”不一而足,这都是很正常的,根据别人的反馈修订
自己的工作。
有几种方法有助于克服研究过程中的不安全感。被承认的感觉:包括毕业论文的接受,发表论文等。
更重要的是,与尽可能多的人交流你的思路,并听取反馈。首先,他们能贡献有用的思路;其次,肯定有
一些人会喜欢你的工作,这会使得你感觉不错。由于评价进展的标准是如此不确定,如果不与其他的研究
者充分的交流,很容易盲目。特别当你感觉不太好时,应该就你的工作进行交流。此时,获得反馈和支持
是非常重要的。
很容易看不到自己的贡献,总是想:“如果我能做,肯定是微不足道的。我的所有思想都太明显了”。
实际上,当你回头看时,这些虽然对你是很明显的,对别人并不一定是明显的。将你的工作解释给很多门
外汉听,你会发现现在对你来说是平淡无奇的东西原来那么难!写下来。
一项对诺贝尔获奖者实施的有关怀疑自己问题(在你研究的过程中,你一直觉得自己是在做震惊世界
的工作吗?)的调查表明:获奖者们一致回答他们经常怀疑自己工作的价值和正确性,都经历过觉得自己
的工作是无关的,太明显了或者是错误的时期。任何科学过程的常见和重要的部分就是经常严格的评价,
很多时候不能确定工作的价值也是科学过程不可避免的一部分。
有些研究者发现与别人协作比单打独斗工作效果更好。虽然人工智能研究经常是相当个人主义的,但
是也有一部分人一起工作,创建系统,联合发表论文。我们实验室至少已经有一个联合做毕业论文的先例。
缺点是很难与协作者区分对论文的贡献。与实验室之外的人合作,例如暑期工作时,问题就会少一些。
很多来到MIT AI实验室的学生都是以前所在学校最厉害的人。来到这里之后,会发现很多更聪明的
人。这对于很多一年级左右学生的自尊形成了打击。但周围都是聪明人也有一个好处:在你把自己不怎么
样的(但自己又没有觉察到)想法发表之前就被其他人给打倒在地了。更现实的讲,现实世界中可没有这
么多聪明人。因此到外面找一份顾问的工作有利于保持心理平衡。首先,有人会为你的才能付费,这说明
你确实有些东西。其次,你发现他们确实太需要你的帮助了,工作良好带来了满足感。
反之,实验室的每一个学生都是从四百多个申请者挑选出来的,因此我们很多学生都很自大。很容易
认为只有我才能解决这个问题。这并没什么错,而且有助于推进领域的发展。潜在的问题是你会发现所有
的问题都比你想象的要复杂得多,研究花的时间比原先计划的多得多,完全依靠自己还做不了。这些都使
得我们中的很多人陷入了严重的自信危机。你必须面对一个事实:你所做的只能对某个子领域的一小部分
有所贡献,你的论文也不可能解决一个重大的问题。这需要激烈的自我重新评价,充满了痛苦,有时候需
要一年左右的时间才能完成。但这一切都是值得的,不自视过高有助于以一种游戏的精神去作研究。
人们能够忍受研究的痛苦至少有两个情感原因。一个是驱动,对问题的热情。你做该研究是因为离开
它就没法活了,很多伟大的工作都是这样做出来的。虽然这样也有油尽灯枯的可能。另外一个原因是好的
研究是充满乐趣的。在大部分时间里,研究是令人痛苦的,但是如果问题恰好适合你,你可以玩一样的解
决它,享受整个过程。二者并非不可兼容的,但需要有一个权衡。
要想了解研究是怎么样的,遭到怀疑的时候应该如何安慰自己,读一些当代人的自传会有些作用。
Gregory Bateson's Advice to a Young Scientist, Freeman Dyson's Disturbing the Universe, Richard
Feynmann's Surely You Are Joking, Mr. Feynmann!, George Hardy's A Mathematician's Apology,
和Jim Watson's The Double Helix.
当你完成了一个项目——例如论文——一两个月后,你可能会觉得这一切是那么不值。这种后冲效果
是由于长时间被压抑在该问题上,而且觉得本可以做得更好。总是这样的,别太认真。等再过了一两年,
回头看看,你会觉得:嘿,真棒!多棒的工作!
尾注
本文包含的思想,文本以及评论来自于Phil Agre, Jonathan Amsterdam, Jeff Anton, Alan Bawden, Danny
Bobrow, Kaaren Bock, Jennifer Brooks, Rod Brooks, David Chapman, Jim Davis, Bruce Donald, Ken Forbus, Eric
Grimson, Ken Haase, Dan Huttenlocher, Leslie Kaelbling, Mike Lowry, Patrick Sobalvarro, Jeff Shrager, Daniel
Weise, and Ramin Zabih。我们要感谢那些对本文作出贡献的人(对我们的论文作出贡献的人,顺便一并致
谢),特别是我们的导师。
上面所列举的一些思想来自于John Backus的《On Being a Researcher》和Alan Bundy, Ben du Boulay,
Jim Howe和Gordon Plotkin的《How to Get a PhD in AI》。
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值