关于群论在量子力学中的应用

本文探讨了群论在量子力学中的应用,包括平移、旋转、空间反演群的概念,以及对称性、守恒律和微扰简并的群论解释。重点阐述了氢原子的SO(4)对称性、布洛赫定理及其在晶体物理中的应用,如晶体点群、空间群、布里渊区和不可约表示。内容深入浅出,揭示了量子力学中对称性与物理现象的紧密联系。
摘要由CSDN通过智能技术生成

基本上还是接着上一篇总结来写的,上一篇总结了连续群的基本概念, SU(2),SO(3) S U ( 2 ) , S O ( 3 ) 群及其表示,角动量理论,物理涉及的不是很多。

这篇总结大概涉及到平移与旋转变换、简并微扰的群伦解释和各向同性谐振子、氢原子的例子。参考书还是那几本。

抽象希尔伯特空间和函数空间

量子态 |ψ | ψ ⟩ 是抽象希尔伯特(Hilbert)空间中的一个矢量,函数空间是一种希尔伯特空间,里面的元素都是满足构成希尔伯特空间的函数。这两个空间同构

位形空间的变换算符 { Q} { Q } 通过对三维矢量的变换而实现了对函数空间中各个函数的变换,相应的对函数的变换算符为 { D^(Q)} { D ^ ( Q ) } 。前面已经证明,如果 { Q} { Q } 构成群,则 { D^(Q)} { D ^ ( Q ) } 也构成群,与前者同态。因为抽象希尔伯特空间与函数希尔伯特空间同构,所以相应的作用在抽象态矢量 |ψ | ψ ⟩ 上的算符记为 { D(Q)} { D ( Q ) } ,它与 { D^(Q)} { D ^ ( Q ) } 同构。

空间平移群

设三维位形空间中,平移群为 { Q} { Q } ,其中元素的作用是 r=Q(λ)r=r+λ r ′ = Q ( λ ) r = r + λ ,为了简洁,直接把 D^(Q(λ)) D ^ ( Q ( λ ) ) D(Q(λ)) D ( Q ( λ ) ) 记为 D^(λ) D ^ ( λ ) D(λ) D ( λ ) . 从而有

D^(λ)ψ(r)=ψ(rλ) D ^ ( λ ) ψ ( r ) = ψ ( r − λ )
由上式根据定义,生成元满足(就不分三分量处理了,统一用矢量符号代替)
I^ψ(r)=limλ01iλ[ψ(rλ)ψ(r)]=iψ(r) I ^ ψ ( r ) = lim λ → 0 1 i λ [ ψ ( r − λ ) − ψ ( r ) ] = i ∇ ψ ( r )
可得该群生成元为
I^=i=P^ I ^ = i ∇ = − ℏ P ^
由此,群元素的一般表达式为
D^(λ)=exp[iP^λ] D ^ ( λ ) = exp ⁡ [ − i ℏ P ^ ⋅ λ ]

空间反演群

在位形空间中把对矢量进行操作 r=Pr=r r ′ = P r = − r 的算符 P P 称为空间反演算符,有时候也用 J 表示。简便起见,也把函数空间和抽象希尔伯特空间对应的变换算符也记为 P P ,其作用如下: P ^ ψ ( r ) = ψ ( r ) 以及 P|r=|r P | r ⟩ = | − r ⟩ ,由上式可得 P2=1 P 2 = 1 ,所以设其本征矢量为 |ψ | ψ ⟩ ,则有 |ψ=P2|ψ=p2|ψ | ψ ⟩ = P 2 | ψ ⟩ = p 2 | ψ ⟩ 从而本征值取 ±1 ± 1 ,分别对应偶宇称和奇宇称。不是其本征态的叫做无确切宇称。

空间转动

前一个总结说了位形空间的转动群 SO(3) S O ( 3 ) 的定义和表示,并类比 SO(2) S O ( 2 ) 群推广得到了它的生成元,这里重新推导一次。
对于无限小转动算符,其作用是 Q(n,dφ)r=r+dφn×r Q ( n , d φ ) r = r + d φ n × r ,也把 D^(Q(n,φ)) D ^ ( Q ( n , φ ) ) 直接记为 D^(n,φ) D ^ ( n , φ ) 则对于函数有

D^(n,dφ)ψ(r)=ψ(rdφn×r)=ψ(r)dφn×rψ(r)=(1idφn×R^P^/)ψ(r)(4)(5)(6) (4) D ^ ( n , d φ ) ψ ( r ) = ψ ( r − d φ n × r ) (5) = ψ ( r ) − d φ n × r ⋅ ∇ ψ ( r ) (6) = ( 1 − i d φ n × R ^ ⋅ P ^ / ℏ ) ψ ( r )
从而
D^(n,dφ)=1idφnL D ^ ( n , d φ ) = 1 − i ℏ d φ n ⋅ L

对于有限转动,分解为无穷多无穷小转动的乘积
D^(n,φ)=limm(1iφmnL)m=exp[iφnL] D ^ ( n , φ ) = lim m → ∞ ( 1 − i ℏ φ m n ⋅ L ) m = exp ⁡ [ − i ℏ φ n ⋅ L ]

算符的分类

算符分为两类:标量算符满足在空间转动下保持不变;矢量算符在空间转动下发生变化,变化就好三维位形空间中矢量的变化一般。
具体来说就是标量算符满足

D(n,φ)SD1(n,φ)=S D ( n , φ ) S D − 1 ( n , φ ) = S
矢量算符满足
D(n,φ)VD1(n,φ)=Q1(n,φ)V D ( n , φ ) V D − 1 ( n , φ ) = Q − 1 ( n , φ ) V
矢量算符再按在空间反演变换下变不变号而分为真矢量和轴矢量(赝矢量)。

可见量子力学中,矢量算符的定义要借助于空间转动,又因为角动量算符是空间转动群的生成元,所以矢量算符的定义和角动量算符关系密切。甚至可以证明得出对于任何矢量算符 V V ,都有 [Li,Vj]=kεijkiVk [ L i , V j ] = ∑ k ε i j k i ℏ V k . 从另一方面也反映出角动量算符根本上完全是一个数学概念——转动群的生成元。

对称性和守恒率

不像一个三维形状,不变性是指它在某个变换下不变,对一个量子态 |ψ | ψ ⟩ 而言,其不变性是指它的演化规律不变。量子态总按照薛定谔方程演化

it|ψ(t)=H|ψ(t) i ℏ ∂ ∂ t | ψ ( t ) ⟩ = H | ψ ( t ) ⟩
为求得在施加变换 Q Q 以后的演化规律,给上面方程从左边乘以 D ( Q )
itD(Q)|ψ(t)=D(Q)HD1(Q)D(Q)|ψ(t) i ℏ ∂ ∂ t D ( Q ) | ψ ( t ) ⟩ = D ( Q ) H D − 1 ( Q ) D ( Q ) | ψ ( t ) ⟩
D(Q)|ψ(t) D ( Q ) | ψ ( t ) ⟩ 记为新状态 |ψ(t) | ψ ′ ( t ) ⟩ 则方程变为
it|ψ(t)=H|ψ(t) i ℏ ∂ ∂ t | ψ ′ ( t ) ⟩ = H ′ | ψ ′ ( t ) ⟩
其中 H=D(Q)HD1(Q) H ′ = D ( Q ) H D − 1 ( Q ) 对比原始的薛定谔方程,如果要求演化规律不变,则必然有
H=D(Q)HD1(Q)[H,D(Q)]=0 H = D ( Q ) H D − 1 ( Q ) ⇔ [ H , D ( Q ) ] = 0
即系统的哈密顿在变换下保持不变,或者哈密顿和变换算符对易这就是系统在某变换 Q Q 下保持不变的数学表达式。

如果哈密顿存在某个对称性群 { Q } 则群里每个元素都和 H H 对易。
如果系统哈密顿不显含时间,则可以研究守恒量,其定义为:海森伯绘景下,物理量算符 A H ( t ) 不显含时间,则物理量 A A 守恒。

如果 [ H , A ] = 0

AH(t)=exp[itH]Aexp[itH]=A A H ( t ) = exp ⁡ [ i ℏ t H ] A exp ⁡ [ − i ℏ t H ] = A
显然满足守恒的条件。所以如果一个算符与 H H 对易,则该物理量是守恒量。

对于平移群,如果哈密顿在平移变换下不变,即 [ H , exp ( i P λ ) ] = 0 对任意矢量 λ λ 成立,这就是说动量守恒:

[H,P]=0 [ H , P ] = 0

对于空间旋转群,如果哈密顿在旋转下保持不变,则类似地有 [H,L]=0 [ H , L ] = 0 ,即 L L 是守恒量。

微扰简并的群论解释

使得系统哈密顿 H H 保持不变的所有空间变换的集合构成一个群 { Q } 称之为系统对称性群。按照上面的分析,对称性群的每个元素都和哈密顿对易 [D(Q),H]=0 [ D ( Q ) , H ] = 0 .

En E n 为哈密顿本征值,设 |ψ(n)i | ψ i ( n ) ⟩ 为哈密顿本征态满足 H|ψ(n)i=En|ψ(n)i H | ψ i ( n ) ⟩ = E n | ψ i ( n ) ⟩ 其中 i=1,2,,dn i = 1 , 2 , ⋯ , d n dn d n 为第 n n 能级的简并度。由于算符群元素 D ( Q ) H H 对易,所以

H D ( Q ) | ψ i ( n ) = D ( Q ) H | ψ i ( n ) = E n D ( Q ) | ψ i ( n )
上式表明态矢量 D(Q)|ψ(n)i D ( Q ) | ψ i ( n ) ⟩ 也是 H H 的本征态,且属于本征值 E n ,所以它还处于第 n n 个简并子空间之中。于是算符 D ( Q ) 对其的作用可以写成

D(Q)|ψ(n)i=j|ψ(n)jDji(Q) D ( Q ) | ψ i ( n ) ⟩ = ∑ j | ψ j ( n ) ⟩ D j i ( Q )
上式表明态矢量 { |ψ(n)i} { | ψ i ( n ) ⟩ } 可以生成哈密顿对称性群 { Q} { Q } 的一个 dn d n 维表示,选取其中的 dn d n 个正交的态矢量出来作为基矢,生成的表示就是幺正的。

这里有一个问题:某 En E n 的本征子空间所生成的表示,可约不可约?有一个结论:只要对称性群找全了,属于一个本征值的本征矢量所生成的表示就是对称性群 { Q} { Q } 的不可约表示。这个结论无法给出一般性的证明。

总结一下,对 H H 的诸本征矢量重新排序,把同属于一个简并子空间的本征矢量聚在一起, H 在自己的表象下,矩阵元为 ψ(m)i|Hψ(n)j=Eβ,qψ(m)

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值