哈密顿正则方程和哈密顿-雅克比方程

本文详细介绍了勒让德变换在将函数关系改写为不同变量形式中的应用,以及如何通过罗斯函数部分替换广义速度。接着讨论了泊松括号在力学量随时间变化中的角色,并阐述了作用量函数在最小作用量原理中的意义。正则变换作为拉格朗日和哈密顿方程间的桥梁,确保了动力学系统的等效性。最后,探讨了哈密顿-雅克比方程在描述系统演化过程中的重要性。
摘要由CSDN通过智能技术生成

勒让德变换和正则方程

设有 f(x,y) f ( x , y ) ,则全微分 df(x,y)=udx+vdy d f ( x , y ) = u d x + v d y ,其中 u=f(x,y)/x,v=f(x,y)/y u = ∂ f ( x , y ) / ∂ x , v = ∂ f ( x , y ) / ∂ y 。这里的变量是 x,y x , y 。注意 u u x , y 的函数,即 u=u(x,y) u = u ( x , y ) ,从这个式子出发,也可以把函数关系表示为 x=x(u,y) x = x ( u , y ) 。现在希望把变量换成 u u y ,也就是说把函数 f(x,y) f ( x , y ) 看做复合函数 f(u,y)=f[x(u,y),y] f ( u , y ) = f [ x ( u , y ) , y ] ,构造函数 g(u,y)=f(u,y)ux(u,y) g ( u , y ) = f ( u , y ) − u x ( u , y ) ,则 dg(u,y)=dfxduudx=vdyxdu d g ( u , y ) = d f − x d u − u d x = v d y − x d u ,上式就成功地把变量换成了 u u y ,有 g(u,y)/y=v,g(u,y)/u=x ∂ g ( u , y ) / ∂ y = v , ∂ g ( u , y ) / ∂ u = − x 。这就是勒让德变换,通过修改被全微分的函数,来把全微分式中 udx u d x 换成 xdu x d u

位形空间中的拉格朗日函数 L(q,q˙,t) L ( q , q ˙ , t ) q q q ˙ 为自由变量,现在想把 q˙ q ˙ 换成对应的动量 p=L/q˙ p = ∂ L / ∂ q ˙ ,让自由变量变成 q q p 。先求其全微分

dL(q,q˙,t)=k(Lqkdqk+Lq˙kdq˙k)+Ltdt d L ( q , q ˙ , t ) = ∑ k ( ∂ L ∂ q k d q k + ∂ L ∂ q ˙ k d q ˙ k ) + ∂ L ∂ t d t
按照广义动量的定义
pk=Lqk˙ p k = ∂ L ∂ q k ˙
和拉格朗日方程
pk˙=ddtLqk˙=Lqk p k ˙ = d d t ∂ L ∂ q k ˙ = ∂ L ∂ q k
代入拉格朗日函数的全微分式中,得到
dL(q,q˙,t)=k(p˙kdqk+pkdq˙k)+Ltdt d L ( q , q ˙ , t ) = ∑ k ( p ˙ k d q k + p k d q ˙ k ) + ∂ L ∂ t d t
上式中扮演自变量身份的还是 qk,q˙k,t q k , q ˙ k , t 三者,现在希望把上式中的 pkdq˙k p k d q ˙ k 换成 q˙kdpk q ˙ k d p k ,从而把自变量换成 qk,pk,t q k , p k , t 三者。为此使用勒让德变换,构造新函数
H(p,q,t)=kpkq˙kL(q,q˙,t) H ( p , q , t ) = ∑ k p k q ˙ k − L ( q , q ˙ , t )
求上式全微分得到
dH(p,q,t)=k(q˙kdpkp˙kdqk)Ltdt d H ( p , q , t ) = ∑ k ( q ˙ k d p k − p ˙ k d q k ) − ∂ L ∂ t d t
这就是说
HpkHqk(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值