质点的分裂与两个参考系
对于一个质点(粒子)因为内能而自发分裂为两个质点,在原质点静止系中看,分裂后两个质点动量等大反向,系统质心仍然静止(因此这个参考系称为质心系,或者C系)。至于能量关系,则有
Eint=E(1)int+p202m1+E(2)int+p202m2 E i n t = E i n t ( 1 ) + p 0 2 2 m 1 + E i n t ( 2 ) + p 0 2 2 m 2
其中
m1,m2 m 1 , m 2
是分裂后两个质点各自质量,
p0 p 0
是分裂后两个质点的动量大小(在C系中的物理量都使用下标0)。分裂前后系统的内能差值为
ε=Eint−E(1)int−E(2)int=p202m ε = E i n t − E i n t ( 1 ) − E i n t ( 2 ) = p 0 2 2 m
其中
m m
为约化质量
。
若在另一个参考系中看待这个问题,设分列前质点以速度 V V 在该系中运动(称之为实验室系,或L系),则有 v=V+v0 v = V + v 0 ,即
v2+V2−2vVcosθ=v20 v 2 + V 2 − 2 v V cos θ = v 0 2
θ θ
为L系中质点相对于
V V
飞出的角度(L系中的物理量不加额外的下标)。根据
v0 v 0
和
V V
的大小关系,有两种情况:

上图只展示了一个剖面,整体具有圆柱对称性,应该把圆心当做球坐标系的原点,把横的直径当做 轴(从左向右),这样 θ θ 就正好是球坐标系中的 θ θ 。
当 V<v0 V < v 0 时,质点在L系中的速度 v v 可以沿着任意方向( θ θ 可取 [0,π] [ 0 , π ] 之间任意值);但如果 V>v0 V > v 0 ,则质点在L系中的速度 v v 方向有限制, θ θ 存在一个最大值 θmax θ m a x , sinθmax=v0/V sin θ m a x = v 0 / V 。
引入C系和L系以后,有必要研究 θ0 θ 0 和 θ θ 的关系。由正弦定理
v0sinθ=Vsin[π−θ−(π−θ0)]=Vsinθ0cosθ−cosθ0sinθ v 0 sin θ = V sin [ π − θ − ( π − θ 0 ) ] = V sin θ 0 cos θ − cos θ 0 sin θ
化简得到
tanθ=v0sinθ0V+v0cosθ0 tan θ = v 0 sin θ 0 V + v 0 cos θ 0
这告诉我们,知道了
θ0 θ 0
就可以得到
θ θ
的值;但是如果
V>v0 V > v 0
则一个
θ θ
有两个
θ0 θ 0
与之对应。
弹性碰撞
弹性碰撞是指两个质点碰撞前后不改变其内部状态(系统内能不变,机械能守恒)。假设碰撞前两个质点在C系中的速度分别为 v10,v20 v 10 , v 20 ,在L系中速度分别为 v1,v2 v 1 , v 2 ,并令 v=v1−v2 v = v 1 − v 2 ,则有
v10=m1m1+m2vv20=−m2m1+m2v v 10 = m 1 m 1 + m 2 v v 20 = − m 2 m 1 + m 2 v
在C系中根据动量守恒,碰撞后(碰撞前也是)两个质点动量等大反向,再根据动能守恒(弹性碰撞),总动能不变(从而速度平方不变)。综上,在C系中的碰撞相当简单:两个质点仅各自旋转了速度的方向,速度大小保持不变。注意碰撞后速度的方向是不一定的。碰撞后的量加上撇号,则有
v′10=m1m1+m2vn^0v′20=−m2m1+m2vn^0 v ′ 10 = m 1 m 1 + m 2 v n ^ 0 v ′ 20 = − m 2 m 1 + m 2 v n ^ 0
其中
n