RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED解决方案

文章讨论了在不同设备上运行已调试代码时遇到的报错,主要关注CUDNN_STATUS_NOT_INITIALIZED,原因可能包括cudnn与cuda或pytorch版本不匹配、显存溢出,以及类别数对应错误。提供了解决方案,如检查库的对应安装和调整batch-size以减少内存需求。
摘要由CSDN通过智能技术生成

问题描述:已经跑通的代码换个电脑出现报错

报错代码:

loss.backward()

 cuDNN error: CUDNN_STATUS_NOT_INITIALIZED

问题原因及解决方案;

1.cudnn与cuda或pytorch未对应,请自查对应关系重新安装(大概率不是这个)

2.程序需要的显存过大导致报错,俗称爆显存,调小batch-size进行尝试

3.报错代码是loss.backward(),请查看代码中的类别数与数据集的类别数是否正确对应

解决方案2、3的报错代码都有可能是loss.backward()........请仔细查验代码~

引用中提到了一个讨论,其中提到了关于`RuntimeError: cuDNN error: CUDNN_STATUS_INTERNAL_ERROR`的问题。引用中的博客提到了一种解决方法,即将`torch.backends.cudnn.enabled`设置为`False`。引用中的目录显示了作者在解决这个问题上经历了一系列曲折的过程。综合这些信息,可以得出以下答案: `RuntimeError: cuDNN error: CUDNN_STATUS_INTERNAL_ERROR`是一个常见的错误,通常与深度学习框架PyTorch和cuDNN库有关。这个错误可能由多种原因引起,例如GPU驱动问题、版本不匹配或其他配置问题。为了解决这个问题,可以尝试将`torch.backends.cudnn.enabled`设置为`False`,这将禁用cuDNN加速,但可能会影响模型的性能。此外,还可以尝试更新GPU驱动程序、重新安装PyTorch或检查其他配置问题。需要注意的是,由于这个问题的复杂性和个体差异,可能需要进行多次尝试和调试才能找到最适合的解决方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [RuntimeError: cuDNN error: CUDNN_STATUS_INTERNAL_ERROR](https://blog.csdn.net/flashlau/article/details/120724131)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【pytorch】cuDNN error: CUDNN_STATUS_INTERNAL_ERROR终终终终于解决了!](https://blog.csdn.net/zylooooooooong/article/details/115585582)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值