wsl!wsl!wsl!
你是否因为win系统bug太多而痛苦!
你是否因为linux环境流畅跑通而羡慕!
wsl!win上的linux!拯救win10!从我做起!
简介:开发人员可以通过适用于 Linux 的 Windows 子系统 (WSL),直接在 Windows 上使用 Linux 系统的一切。
1.wsl2的安装与迁移
1.安装
Microsoft store 找到ubuntu22.04,点击获取(顺便安装一下windows terminal,之后的命令行操作都在windows terminal中执行)
2.设置
启动时会下载部分文件,并设定用户名和密码
3.位置迁移(默认在c盘,建议迁移)
从Win的开始菜单找到windows powershell,打开,输入以下代码显示目前已安装的子系统:
wsl -l
在D盘新建wsl文件夹,并输入以下代码将ubuntu备份(Ubuntu-22.04为第三步查询到的子系统名称),此时打开D盘wsl文件夹查看:
wsl --export Ubuntu-22.04 D:\wsl\Ubuntu.tar
然后删除子系统,此时使用第三步查询已无法查到原有子系统
wsl --unregister Ubuntu-22.04
从D盘备份中恢复子系统,然后wsl -l查询是否恢复成功
wsl --import Ubuntu-22.04 D:\wsl D:\wsl\Ubuntu.tar
将新系统的用户设置成你想设置的用户名
ubuntu2204.exe config --default-user 用户名
打开win terminal,选中Ubuntu 22.04
设置成功,此时wsl已经在D盘wsl文件夹下的ext4.vhdx中
为了方便与win文件互传,在win10左下角搜索栏输入\\wsl$,点击运行此命令,即可在win10的文件系统中直观访问wsl内部文件系统
2.深度学习环境搭建
1.conda安装
下载安装包
wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh
安装,一路enter,然后输入yes,再按一下enter,最后再输入yes
sh Anaconda3-2024.02-1-Linux-x86_64.sh
此时conda创建环境会显示conda: command not found,关闭这个页面,从win terminal重新进入一次,显示(base) 用户名@DESKTOP-UA3C67F:~$即可,输入指令创建虚拟环境(ss为环境名称),然后y
conda create -n ss python==3.8
输入conda activate ss激活环境,然后将pip锁定至清华源方便后续下载
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
2.cuda安装
ubuntu换源,首先打开配置文件,
sudo vim /etc/apt/sources.list
i进入编辑模式,将原有软件源开头全部用#注释掉,然后将以下代码复制进去,然后按esc推出编辑模式,输入:wq保存并退出,输入sudo apt update
更新软件包(感谢@balixiaxuetian提醒)
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-backports main restricted universe multiverse
deb http://security.ubuntu.com/ubuntu/ jammy-security main restricted universe multiverse
安装gcc
sudo apt install build-essential
访问链接CUDA Toolkit 11.8 Downloads | NVIDIA Developer下载cuda11.8
建议先把第一行的代码复制下载好移动到wsl2系统中,第二步执行过程中输入accept等根据图形界面显示逐步进行
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
编辑环境变量
sudo vim ~/.bashrc
i进入编辑模式,在末尾将以下代码复制进去,然后按esc推出编辑模式,输入:wq保存并退出
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.8/lib64
export PATH=$PATH:/usr/local/cuda-11.8/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.8
输入source ~/.bashrc刷新环境变量,输入nvcc -V查看cuda是否已经安装成功
3.cudnn安装
访问cuDNN Archive | NVIDIA Developer选择适合的cudnn版本,选择Local Installer for Linux x86_64(tar)版本下载,移动到wsl2系统中Local Installer for Linux x86_64 (Tar)https://developer.nvidia.com/downloads/compute/cudnn/secure/8.9.7/local_installers/11.x/cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz/
解压并复制文件
sudo tar -xvf cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz
cd cudnn-linux-x86_64-8.9.7.29_cuda11-archive/
sudo cp -r lib/* /usr/local/cuda-11.8/lib64/
sudo cp -r include/* /usr/local/cuda-11.8/include/
sudo chmod a+r /usr/local/cuda-11.8/lib64/libcudnn*
sudo chmod a+r /usr/local/cuda-11.8/include/cudnn*
验证是否成功安装
cat /usr/local/cuda-11.8/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
4.torch安装
conda创建环境,之后利用conda activate ss激活环境
conda create -n ss python==3.10
从官网找到下载链接以前的 PyTorch 版本 |PyTorch的
conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 pytorch-cuda=11.8 -c pytorch -c nvidia
验证是否成功
实测wsl2相比win训练速度有部分提升,祝大家的深度学习之旅一帆风顺。