超详细wsl2安装深度学习环境2024最新版(cuda11.8+torch2.2)

wsl!wsl!wsl!

你是否因为win系统bug太多而痛苦!

你是否因为linux环境流畅跑通而羡慕!

wsl!win上的linux!拯救win10!从我做起!


简介:开发人员可以通过适用于 Linux 的 Windows 子系统 (WSL),直接在 Windows 上使用 Linux 系统的一切。


1.wsl2的安装与迁移

1.安装

Microsoft store 找到ubuntu22.04,点击获取(顺便安装一下windows terminal,之后的命令行操作都在windows terminal中执行)

507932a3fd62448296ab187097d8fc3b.png

2.设置

启动时会下载部分文件,并设定用户名和密码

478efba2d9b644208d883c4a7cee5c0d.png

3.位置迁移(默认在c盘,建议迁移)

        从Win的开始菜单找到windows powershell,打开,输入以下代码显示目前已安装的子系统:

wsl -l

        在D盘新建wsl文件夹,并输入以下代码将ubuntu备份(Ubuntu-22.04为第三步查询到的子系统名称),此时打开D盘wsl文件夹查看:

wsl --export Ubuntu-22.04 D:\wsl\Ubuntu.tar

3d483fe597054151a2074817d0584053.png        然后删除子系统,此时使用第三步查询已无法查到原有子系统

wsl --unregister Ubuntu-22.04

        从D盘备份中恢复子系统,然后wsl -l查询是否恢复成功

wsl --import Ubuntu-22.04 D:\wsl D:\wsl\Ubuntu.tar

        将新系统的用户设置成你想设置的用户名

ubuntu2204.exe config --default-user 用户名

        打开win terminal,选中Ubuntu 22.04

d3dee09dbf404777944fd5714759c585.png

        设置成功,此时wsl已经在D盘wsl文件夹下的ext4.vhdx中42f1dd07170e429691be0a9ed9a0cfbe.jpeg

        为了方便与win文件互传,在win10左下角搜索栏输入\\wsl$,点击运行此命令,即可在win10的文件系统中直观访问wsl内部文件系统

5581694191424288975cef48da87ab54.png

2.深度学习环境搭建

1.conda安装

        下载安装包

wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh

        安装,一路enter,然后输入yes,再按一下enter,最后再输入yes

sh Anaconda3-2024.02-1-Linux-x86_64.sh

        此时conda创建环境会显示conda: command not found,关闭这个页面,从win terminal重新进入一次,显示(base) 用户名@DESKTOP-UA3C67F:~$即可,输入指令创建虚拟环境(ss为环境名称),然后y

conda create -n ss python==3.8

        输入conda activate ss激活环境,然后将pip锁定至清华源方便后续下载

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

2.cuda安装

        ubuntu换源,首先打开配置文件,

sudo vim /etc/apt/sources.list

        i进入编辑模式,将原有软件源开头全部用#注释掉,然后将以下代码复制进去,然后按esc推出编辑模式,输入:wq保存并退出,输入sudo apt update更新软件包(感谢@balixiaxuetian提醒)

deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-backports main restricted universe multiverse
deb http://security.ubuntu.com/ubuntu/ jammy-security main restricted universe multiverse

        安装gcc

sudo apt install build-essential

         访问链接CUDA Toolkit 11.8 Downloads | NVIDIA Developer下载cuda11.8

cb8775eeb4bf48e281eeba33890aebd4.png

         建议先把第一行的代码复制下载好移动到wsl2系统中,第二步执行过程中输入accept等根据图形界面显示逐步进行

wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run

         编辑环境变量

sudo vim ~/.bashrc

         i进入编辑模式,在末尾将以下代码复制进去,然后按esc推出编辑模式,输入:wq保存并退出 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.8/lib64
export PATH=$PATH:/usr/local/cuda-11.8/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.8

         输入source  ~/.bashrc刷新环境变量,输入nvcc -V查看cuda是否已经安装成功

2fa70107ba4143e1ba16676b60539b2c.png

3.cudnn安装

         访问cuDNN Archive | NVIDIA Developer选择适合的cudnn版本,选择Local Installer for Linux x86_64(tar)版本下载,移动到wsl2系统中Local Installer for Linux x86_64 (Tar)icon-default.png?t=N7T8https://developer.nvidia.com/downloads/compute/cudnn/secure/8.9.7/local_installers/11.x/cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz/

24b4db86b6954d87a03a81a5dc3d9330.png

         解压并复制文件

sudo tar -xvf cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz
cd cudnn-linux-x86_64-8.9.7.29_cuda11-archive/
sudo cp -r lib/* /usr/local/cuda-11.8/lib64/
sudo cp -r include/* /usr/local/cuda-11.8/include/
sudo chmod a+r /usr/local/cuda-11.8/lib64/libcudnn*
sudo chmod a+r /usr/local/cuda-11.8/include/cudnn*

          验证是否成功安装

cat /usr/local/cuda-11.8/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

2253dd3b87244cb88228e9a83b848b1a.png

4.torch安装

          conda创建环境,之后利用conda activate ss激活环境

conda create -n ss python==3.10

          从官网找到下载链接以前的 PyTorch 版本 |PyTorch的

conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 pytorch-cuda=11.8 -c pytorch -c nvidia

           验证是否成功

dcf179e6453a49fe850c7101eec1f6ab.png

           实测wsl2相比win训练速度有部分提升,祝大家的深度学习之旅一帆风顺。

参考:

很专业的一位up,七十七的德的个人空间-七十七的德个人主页-哔哩哔哩视频 (bilibili.com)

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值